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Abstract

Due to the communication bottleneck in distributed and de-
centralized federated learning applications, algorithms using
compressed communication have attracted significant atten-
tion. The Error Feedback (EF) is a widely-studied compres-
sion framework for convergence with biased compressors
such as top-k sparsification. Although various improvements
have been obtained in recent years, the theoretical guaran-
tee for EF-type framework is still limited. Previous works
either 1) rely on strong assumptions such as bounded gradi-
ent/dissimilarity assumptions, thus can not deal with arbitrary
data heterogeneity and also slow the convergence speed, or 2)
can not enjoy linear speedup in the number of clients. In this
work, we propose a new EFSkip framework which removes
the strong assumptions to allow arbitrary data heterogeneity
and enjoys linear speedup for significantly improving upon
previous results. In particular, EFSKip achieves the complex-
ity result 0(5624

+ }2) while previous EF21 only obtains

O(% + 552 ), i.e., EFSKip enjoys the linear speedup in the
number of clients n (reducing the result linearly using more
clients) and also removes the compression factor § (match-
ing the result without compression). We also show that EF-
Skip enjoys linear speedup and achieves faster convergence
for nonconvex problems satisfying Polyak-f.ojasiewicz (PL)
condition. We believe that the new EFSkip framework will
have a large impact on the communication- and computation-
efficient distributed and decentralized federated learning.

1 Introduction

With the proliferation of mobile and edge devices, federated
learning (FL) (McMabhan et al. 2017; Konec¢ny et al. 2016b)
has recently emerged as a disruptive paradigm for training
large-scale machine learning models over a vast amount of
distributed and heterogeneous devices/clients. FL is usually
modeled as a distributed optimization problem (Konecny
et al. 2016a,b; McMahan et al. 2017; Kairouz et al. 2019;
Zhao, Li, and Richtarik 2021; Wang et al. 2021), aiming to
solve

min

z€R

{f(ﬂf;p) déf%z:fi(l’;pi)}’ €]
i=1
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where f;(x; D;) &f E¢,~p,[fi(z;&;)]. Here, n denotes the

number of clients and each client ¢ € [n] has a local (non-
convex) loss function f; associated with a local data distri-
bution D;. In particular, f;(x;¢;) denotes the loss function
of model x on a random data sample &; on client . For sim-
plicity, we may use f(z) and f;(x) to denote f(x;D) and
fi(x; D;), respectively.

In this work, we consider both distributed (where a cen-
tral server exists and communicates with all n clients) and
decentralized (where there is no server and clients can only
communicate with their neighbors over a network) settings.

1.1 Communication compression and error
feedback

A standard approach to solve (1) in the distributed setting
is using gradient-type algorithms, i.e., each client computes
the (stochastic) gradient of the model on its local dataset and
transmits the gradient to the server, and the server aggregates
all gradient information to update the model and then broad-
casts the updated model to all clients. The steps are repeated
until a stopping criterion is achieved. However, modern ma-
chine learning models are often overparameterized and have
a huge number of parameters (Arora, Cohen, and Hazan
2018), for instance, the language model GPT-3 (Brown et al.
2020) has billions of parameters. The communication cost
forms a main bottleneck of the distributed training system.
A typical method for communication-efficient distributed
learning is compression (Alistarh et al. 2017; Li et al. 2020),
i.e., compress the communicated messages with fewer bits
to reduce the communication cost. For example, each client
can compress its local gradient and transmit the compressed
message to the server. However, naively integrating the com-
pression framework into the communication steps of dis-
tributed algorithms cannot guarantee convergence, as shown
in the following example.

A counter-example. The number of clients is n = 3. The
local loss functions are given by f;(z) = 3z T A;z, where
the A;s are diagonal matrices with A; = diag(—4,3,3),
Ao = diag(3,—4,3), and A5 = diag(3,3,—4). The al-
gorithm is initialized at z° = (1,1,1) " and the compres-
sor C(+) is top-1 (See Example 1 for the definition of top-
k sparsification). The local gradients for these three clients
at 20 are Vf1(20) = Az¥ = (—4,3,3)T, Vfa(2?)



Aox® = (3,-4,3)T, and V f3(2°) = A32° = (3,3,—-4) T,
and becomes C(V f1(2°)) = (=4,0,0)T, C(Vf2(z?)) =
(0,—4,0)7,C(V f3(x°)) = (0,0, —4) T after the top-1 spar-

sification. The server aggregates the compressed gradients
to update the model for the next round, yielding z'

- n3 Z (sz( 9)) = (1 + 3n)a°. Then after ¢
rounds the 1terate z' = (1+ 3n)*z° diverges exponentially.

Error feedback. The error feedback (EF) (Seide et al. 2014;
Stich, Cordonnier, and Jaggi 2018; Karimireddy et al. 2019),
also known as error compensation, is a popular compression
framework to fix the divergence issues. In EF, each client
maintains a term recording the compression error, and in
each round, instead of directly compressing its local gra-
dient, an error-compensated one is compressed and sent to
the server. More concretely, for the naive direct compression
framework:

ct =C(Vfi(ah) (direct compression)  (2)

1 n
gttt = gt — n— Z c§ (model update) 3)

n
i=1
and for the EF compression framework:
ci =C(el +nVfi(x"))  (error compensation) (4)
1 n

gt = ¢ del updat 5
x x n;cl (model update) (5)
et = el £ nVfi(z') — b (compute the error)  (6)

1.2 Data heterogeneity and linear speedup

Although the EF compression framework can fix the di-
vergence of direct compression, previous works are not
able to deal well with the data heterogeneity in fed-
erated learning. To obtain theoretical results, they typi-
cally require some strong assumptions on data heterogene-
ity (see Tables 1-2 for algorithms using EF framework).
Two widely-used assumptions are bounded gradient as-
sumption Ee, (2;6)? < G2, for all clients i €
[n] and Vo € R, and bounded dissimilarity assumption
LY |V fi@s D) — V(s D)|? < 2,V € RE. !

Richtarik, Sokolov, and Fatkhullin (2021) proposed a new
EF21 framework to remove these bounded assumptions
and thus can allow arbitrary data heterogeneity among the
clients (see Tables 1-4 for algorithms using EF21). How-
ever, EF21 cannot enjoy linear speedup in the number of
clients n unlike EF, and thus EF21 leads to a worse compu-
tation complexity, i.e., O( %) vs. the speedup term O( 7;‘—;)
in EF. Several EF21 variants have also been proposed re-
cently (Huang, Li, and Li 2024; Gao, Islamov, and Stich
2024).

!These bounded assumptions are quite strong and even do
not hold for simple quadratic functions, e.g., linear regression.
Let us just consider a 1-dimensional linear regression f;(z) =
(aiz — b;)* and f(z) = L 3" (a;x — b;)?, then the gradient
HVfl( JI? = 4(aZz — a;b;)? cannot be bounded by a constant
G? for Vo € R, and the dissunilarlty IV fi(z) — VF(@)]? =
4((a7 — 2370 1 af)a® — abi + L300 | aib;)? also cannot be

n £Lai=1 "1

bounded by a constant ¢? for Vz € ]R
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2 Contributions

In order to remove these restrictive assumptions (for al-
lowing arbitrary data heterogeneity) and enjoy the linear
speedup (for reducing the computation complexity linearly
using more clients) simultaneously, we propose a new EF-
Skip framework, which indeed achieve both of the design
objectives (see the last row of Tables 1-4), i.e., EFSkip
can deal with arbitrary data heterogeneity and can en-
joy the linear speedup in the number of clients simulta-
neously, making it a superior compression framework for
communication- and computation-efficient distributed and
decentralized learning. Tables 1-4 present an overview of
the comparison of EFSkip with previous works. We would
like to highlight the following results:

Computation complexity. Although EF21 (Richtarik,
Sokolov, and Fatkhullin 2021; Fatkhullin et al. 2021; Zhao
et al. 2022) removes the bounded gradient/dissimilarity as-
sumptions on data heterogeneity required by EF (i.e., re-
moving the term O(%) or O( )), EF21 cannot enjoy the
linear speedup and thus leads to a worse computatlon com-

plexity compared with EF (i.e., O(53; 4) vs. O(Z )) How-
ever, EFSKip can achieve both goals srmultaneously, ie., re-

moving the heterogenelty term O () or o(% = ) and enjoying

linear speedup O(-Z ) in terms of the number of clients n.

Moreover, compared with the complexity O (53— 53 T+ 052) of

EF21, our O( = + 62) of EFSKip also removes the depen-
dency on the compression factor §, and thus matching the
result without compression. Note that 6 € (0, 1] is usually
equal to the compression ratio and no compression implies
0 = 1 (see Definition 1 and Example 1 in Section 3).

For nonconvex problems with PL condition (Tables 3—4),
we also show that EFSKip can enjoy linear speedup in the
number of clients n and removes the compression factor d,
ie., O(;25; log ) of EFSKip vs. O(55; log 1) of EF21.
Also, for PL setting in Tables 3—4 (note that there is no result
for EF in this PL setting), both EF21 and EFSkip obtain
better results compared with that without PL condition in
Tables 1-2, and the results in PL setting can directly apply to
strongly convex problems.

Communication complexity. Similar to computation com-
plexity, EFSKip removes the terms G or ¢ that depend on the
gradient and data dissimilarity bound, and improves the or-
der O( ) or O( 3) of methods using EF to O(35) (see
Table l) Here s stands for the skipsize, and is set to be
s =log 1 (n + 2) in EFSKip. Note that s = 1 if no com-

pression (1 e.,d = 1) is applied. In practice, a small constant
s is enough, e.g., s = 4.

2.1 EFSKip vs. the previous EF21 framework
Similar to the comparison between direct compression and
EF provided at the end of Section 1.1, i.e., (2)—(6), in
this section we compare the EF21 framework (Richtarik,
Sokolov, and Fatkhullin 2021) with our EFSkip framework
(see Figure 1).



For the previous EF21 compression framework (Richtarik, Sokolov, and Fatkhullin 2021):

1 n
=gt — (gl + = Z 1 (model update)
n
i=1
gi=g 4+t (update local shift)
AV =V, fi(ztt1) — gt (compute shifted local gradient information)
ct =C(AY), (communication compression)

Q)

®)
®
(10

where V, f; (zt11) := % 2221 V fi(z'+1;&; ;) denotes the stochastic gradient computed by a minibatch with size b drawn from

local data distribution D;.

For our new EFSKip compression framework:

if ¢ mod s = 0 then (compute stochastic gradient once every s rounds)
n

ot =gt _p(gt=s 4+ 1 Z ™ (model update)
=

gi=gl 4t (update local shift)

A? = V, fi(ztt1) — gt (compute shifted local gradient information)

cg =C (A?) (communication compression)

else (skip gradient computation via reusing A?)

cd=ct+c(Ad —cth. (communication compression)

Figure 1: EF21 Framework vs. Our EFSkip Framework

(11)

(12)

13)
(14)
(15)
(16)
)

Compression Algorithm Communication complexity ! Computation complexity Stong assumption 2 Linear speedup
framework 8 (#communication rounds) (#stochastic gradients) on data heterogeneity in #clients
Qsparse-SGD -2 G2 2 b2 G2 o ) Sor
(Basu et al. 2019) o ( A L ) (0] ( <7 + L(s?ﬁ) bounded gradient vifn < 55
Error
CSER 2 G 1 2 a | - . 502
Feedback (Xie et al. 2020) o ( T+ 53+ €—2> (@] ( “T+53+ €—2> bounded gradient vifn < 85
(EF)
NEOLITHIC 2 COR R 2 COR 2\ 3 . . 502
(Huang et al. 2022) o ( o +33+ 5—2) o ( “T+ 53+ jz) bounded dissimilarity vifn < S
EF21-SGD
2
EF21 (Richtarik, Sokolov, and Fatkhullin 2021; 16) ( — ) 16) ( S ﬁ) No x
Fatkhullin et al. 2021)
EFSkip EFSkip-SGD 4 2 1\ s
O % o< : N v
(this paper) (Theorem 1) (67) ( ned * 67) ©

Table 1: Communication and computation complexity results of algorithms for finding an e-solution E[||V f(Z)]|?] < €2 of

nonconvex problem (1) in distributed setting.

!'In this column of communication complexity, we list the number of communicaiton rounds since all algorithms use the same compression
operator in Definition 1, i.e., the communication bits of the compressed message for each round are the same. Note that communication

complexity = communication rounds X communication bits per round.

2 Here bounded gradient assumption is Ee,~p, ||V fi(2;&)||> < G2, for all clients i € [n] and Vz € R<, and bounded disimilarity
assumption is £ 3" ||V fi(z; D) — V f(z; D)||* < (%, for Vo € R, i.e., the local gradient of loss function on clients are close to the

n

global gradient. No means that no additional assumption is required, i.e., allowing arbitrary data heterogeneity among the clients.

*The @ and R > 1 are parameters such that § := 4(1 — §)%.

4 Here the skipsize s = logﬁ (n + 2) for EFSkip-SGD (Algorithm 1) in distributed setting. Note that s = 1 if no compression (i.e.,

6 = 1) is applied. In practice, a small constant s is enough, e.g., s = 4.

> Main result: EFSKip-SGD enjoys the linear speedup in the number of clients n (reducing the computation complexity linearly using
more clients) and also removes the compression factor ¢ (matching the result without compression). Note that 6 € (0, 1] is usually equal
to the compression ratio and no compression implies 6 = 1 (see Definition 1). In particular, top-k or random-k sparsification satisfies

Definition 1 with 6 = %, where d is the dimension of model (i.e., total number of parameters) in problem (1).
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Compression Algorithm Communication complexity Computation complexity Stong assumption Linear speedup
framework g (#communication rounds) (#stochastic gradients) on data heterogeneity in #clients n
SQUARM-SGD -4 nG2 e nG2 . . 2
(Singh et al. 2021) O(ne“ + 52(62 ) o ( e 52(62) bounded gradient Vifn < 82-
Error
DeepSqueeze 2 - 2 PRSI N 3/2,2
Feedback (Tang et al. 2019) O(m + ﬁ + 6%) O(m + ﬁ —+ E%) bounded dissimilarity Vvifn < 6/67:
(EF)
CHOCO-SGD 2 o | o2 G 1 ) ) 502
(Koloskova et al. 2020) O(x+55+%) O(Zr+ 3%+ %) bounded gradient vifn < 95
BEER 2
EF21 (L) o (L 1 ) No x
(Zhao et al. 2022) 5e2 59 T 52
EFSkip EFSkip-BEER O( B ) 1 ( 2 T ) 5 No v
(this paper) (Theorem 2) 52 noed 5e2

Table 2: Communication and computation complexity results of algorithms for finding an e-solution E[||V f(Z)||?] <
€2 of nonconvex problem (1) in decentralized setting.

! Here the skipsize s = log 1 Cs, where ¢, is an absolute constant, for EFSkip-BEER (Algorithm 2) in decentralized setting.
% Main result: EFSkip-BEER also enjoys the linear speedup in the number of clients n for this decentralized setting. Recall
that & € (0, 1] is usually equal to the compression ratio and no compression implies § = 1.

Compression Algorithm Communication complexity Computation complexity Linear speedup
framework 8 (#communication rounds) (#stochastic gradients) in #clients
EF21-SGD
s . 2
EF21 (Richtdrik, Sokolov, and Fatkhullin 2021; o ( 2 log g) o) (( o + ) log g) x
Fatkhullin et al. 2021)
EFSki EFSkip-SGD

FSkdp Skip-SG O(21081) O((:25; + 1)10g 1) v

(this paper) (Theorem 3) # € nuce © €

Table 3: Communication and computation complexity results of algorithms for finding an e-solution
E[f(Z) — f*] < € of nonconvex problem (1) in distributed setting under PL condition (i.e., the global
function f(x) satisfies PL condition (10)). Note that u-strong convexity implies p-PL. As a result, all results
obtained under PL condition directly hold for strongly convex problems.

! Here the skipsize s = log s (2n + 4) for EFSkip-SGD in the distributed PL setting.

T
? Main result: EFSkip-SGD also enjoys the linear speedup in the number of clients n for the distributed PL setting.
Recall that § € (0, 1] is usually equal to the compression ratio and no compression implies § = 1.

Compression Algorithm Communication complexity Computation complexity Linear speedup
framework g (#communication rounds) (#stochastic gradients) in #clients n
BEER 1 1 2 1 1
1 1 o 4 1 1 X
EF21 (Zhao et al. 2022) 0(5“ log ) O<( 2z T ) los )
EFSki EFSkip-BEER
-FSkip Skip O(#10gt) O((0m: + ) log 1) v
(this paper) (Theorem 4) H nép<e H

Table 4: Communication and computation complexity results of algorithms for finding an

e-solution E[f(Z)

— f*] < € of nonconvex problem (1) in decentralized setting under

PL condition. Similarly, all results obtained under PL condition directly hold for strongly
convex problems.

!'Here the skipsize s = log _ Css where ¢, is an absolute constant, for EFSkip-BEER in the

1

1

decentralized PL setting.
2 Main result: EFSkip-BEER also enjoys the linear speedup in the number of clients n for this
decentralized PL setting.
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In particular, EFSKip can reduce to EF21 with skipsize
s = 1 since t mod 1 is always equal to 0. With our new EF-
Skip compression framework, we propose two algorithms i)
EFSkip-SGD (Algorithm 1) for the nonconvex distributed
setting in Section 4; ii) EFSkip-BEER (Algorithm 2) for the
nonconvex decentralized setting in Section 5.

3 Preliminaries

Let [n] denote the set {1,2,--- ,n} and || - || denote the Eu-
clidean norm of a vector. Let 1 denote the all-ones vector.
Let (u,v) denote the inner product of vectors v and v, and
u®v denote the element-wise product. Let a mod b denote
the remainder of a divided by b. Let f* := min,cpra f(z) >
—oo denote the optimal value of the objective function
in (1). We use O(-) to hide the absolute constants.

Compression, in the form of sparsification or quantiza-
tion, can be used to reduce the communication cost. We now
introduce the notion of a general biased compression oper-
ator widely used in many distributed and federated learn-
ing algorithms, e.g., (Stich, Cordonnier, and Jaggi 2018;
Koloskova et al. 2020; Richtarik, Sokolov, and Fatkhullin
2021; Fatkhullin et al. 2021; Richtarik et al. 2022).

Definition 1 (Compression operator) A (randomized)
map C : R — R? is a biased compression operator if there
exists a0 < 0 < 1, such that for all x € R4,

E[IC(x) — |’] < (1 = 8)ll=]*.

In particular, no compression (C(x) = x) implies 6 = 1.

(N

Compared with an unbiased compression operator used in,
e.g., (Alistarh et al. 2017; Khirirat, Feyzmahdavian, and Jo-
hansson 2018; Mishchenko et al. 2019; Li and Richtarik
2020; Li and Richtarik 2021; Zhao et al. 2021), the general
compression operator in Definition 1 does not impose the
additional constraint such that E[C(z)] = x. Moreover, the
unbiased compression operator can be converted into a bi-
ased one satisfying Definition 1, i.e., for any unbiased com-
pression operator C' : R? — R? that satisfies E[C’(z)] = =
and E[||C'(z) — z||?] < w||z|?, we can construct a biased

/
CIJ(F'”) and the new com-
w

pression operator satisfies Definition 1 with § = ——. Note

14+w*
that w can be larger than 1 for unbiased compressors. Thus,
Definition 1 is a generalization of the unbiased compression.

compression operator C : C(z) =

Example 1 The top-k sparsification keeps the coordinates
with the top-k largest absolute values, i.e., top,(z) := © ®
Uy, where uy € {0, 1} satisfying ||u.||1 = k and u, (i) = 1
iff |z:| > |x;| for all j with uy(j) = 0. In particular, top,, is
a §-compression operator with 6 = %, i.e., satifies (7) as

B [ltope(e) = ol) < (1-5) el ®

Besides, random-k that randomly keeps k coordinates is
also a 6-compression operator with 6 =

d:

4 EFSKkip for Distributed Setting

For the nonconvex problem (1) in the distributed setting
where a central server exists and communicates with all n
clients, we propose the EFSkip-SGD (Algorithm 1) and
provide its theoretical results.
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4.1 EFSKip-SGD algorithm

Now we formally describe the distributed SGD with our
EFSkip compression framework as EFSkip-SGD in Algo-
rithm 1. We would like to highlight that the clients only com-
pute their local stochastic gradients once every s rounds.

4.2 Theoretical results of EFSkip-SGD

Before providing the theoretical results of EFSkip-SGD,
we first state the following standard assumptions (Nesterov
2004; Ghadimi and Lan 2013; Li et al. 2021; Li, Hanzely,
and Richtarik 2021; Li and Li 2022).

Assumption 1 (Smoothness) The local function f; is L-
smooth, i.e., Vx,y € R?,

IVfi(z) = Vi)l < Lllx = yll.

We point out that Assumption 1 can be relaxed to the average
smoothness assumption E;[||V fi(x) =V £;(y)||?] < L%z —
y||?> which does not affect the results obtained in this work.

During the training, the clients are allowed to compute
stochastic gradients sampled from their local data distribu-
tions (see Line 9 of Algorithm 1). We make the following
standard assumption for the stochastic gradients.

Assumption 2 (Stochastic gradient) Let Vf;(x)
V fi(x;&;) denote a stochastic gradient computed by client
i via a sample &; drawn i.i.d. from its local data distribution
D;, we have

E||Vfi(z) = Vfi(2)|* < o> )

Let Vfi(z) := 7 22:1 V fi(z;&; ;) denote the stochastic
gradient computed by a minibatch with size b drawn i.i.d.
~ 2
from D;, it is not hard to see E[|Vy f;(2) — V fi(z)[* < .
Now we provide the theoretical results of EFSkip-SGD
for solving the distributed nonconvex problem (1).
Theorem 1 Suppose that Assumptions 1 and 2 hold. Let
. < 1 . . _ 2002
stepsizen < RESYZTy2 minibatch size b

, and skip-

ne2
size s = log . (n+2), then the communication complexity

and computation complexity for EFSKip-SGD 1o find an e-
solution (i.e., E[||V f(Z7T)||?] < €2) of distributed nonconvex
problem (1) are as follows:

i) Communication complexity is computed as the total
number of communication rounds (denoted as #frounds)
times the communicated bits per round (denoted as d):

#rounds = O (i

2) ; where skipsize s = log 1 _ (n+2),2
€

1
=
and the communicated bits per round ds depends on the
compression operator (Definition 1) used by Algorithm I,
e.g., for top-k sparsification (see Example 1) ds = O(k).
Note that no compression C(x) = x implies ds = O(d).
ii) Computation complexity is computed as the total
number of stochastic gradient computations (denoted as

#gradients):

1 if no compression (i.e.,

2
1
#gradients = O ( 7 + =

net

*Note that we can simply set s
0 = 1) is applied.



Algorithm 1: EFSkip-SGD

Input: initial point 2°, stepsize 7, minibatch size b, skipsize s

1: Initialize 0;1 =0,9;°=C(g)), 3% = %Z;)':l Vi@ & ), et = %2?21 c{l, g °= %Z?:l g; % a7t =240
2: fort=0,1,2,..., T —1do

3: ift mod s = 0 then

4 gt = gt=5 + 1
5: Server updates z't1 = 2!+175 — gt and broadcasts z'*! to all clients
6: endif
7. for each client i € [n] do in parallel
8: if t mod s = 0 then
9: Compute stochastic gradients g/ ™' = 1 ZZ;:I Vi@t & 5)
10: AY = gitt — gt where gt = gl 7% + ¢l //this gradient information AY will be reused for s rounds
11: Compress ¢! = C(AY) and send it to the server
12: else //skip gradient computations via reusing A?
13: Compress C(AY — ct™1) and send it to the server
14: Update ¢! = i~ ' +C(A) — i ™1)
15: end if
16:  end for ) o
) . ¢ [E3 L C(AY) ift mods =0
17:  Server aggregates compressed info ¢* = {Ct_l %Z:‘L:l (A0 — cf_l) if £ mod s 2 0
18: end for
5 EFSkip for Decentralized Setting Model and gradient update. The clients update their lo-
For the nonconvex problem (1) in decentralized setting cal models using a perturbed average consensus mechanism
where there is no server and clients can only communicate (Line 5 of Algorithm 2). Since H' ~ X'+'~, the first two
with their neighbors over a prescribed network topology, we terms correspond to averaging the local parameters using the
propose the EFSKip-BEER (Algorithm 2) and provide its graph Laplacian I — W. The third term is a descent step
theoretical results. with gradient estimator V™17 ~ VF(X'T17%) With the
newly computed minibatch gradient at X**!, the estimator
5.1 EFSkip-BEER algorithm V is updated in Line 7 of Algorithm 2 using a gradient track-

In the decentralized setting, the clients can only communi-
cate with their local neighbors over a prescribed communi-
cation network, modeled by an undirected graph G([n], F).

Here, each node i € [n] represents a client, and (4, j) € F if ence of the two last computed gradients.

there is a communication link between client 7 and j. Compression. Right after computing the new X**!, we in-

Since clients cannot synchronize in one shot, we let voke the EFSKip compression and compute the increment
each client ¢ hold a local replicate of the parameter AY in Line 10 of Algorithm 2. To better illustrate the sub-
r, denoted as x; and use X = [71,%2,..,7,] € sequent communication steps, we combine Line 15 and 4 of
RI*™ to denote the parameters of all clients. Similarly, Algorithm 2 and rewrite H'**W, which will be used in the
the collection of local gradients and stochastic mini- next computation round ¢ + s, as:
batches computed by the clients are respectively given by a1

— dxn .

YF(X) = [VNfl((El), VIQ(LCQ), ceny Vf@(xn)] e R diI:Ld Ht+sW — HtW + (CZ + ZC(A?L _ CZ_1+T))W )
Vo F(X) := [Vy fi(21), Vi f2(2), -, Vi fu(2n)] € RT =

ing scheme (Zhu and Martinez 2010; Di Lorenzo and Scu-
tari 2016; Nedi¢, Olshevsky, and Shi 2017; Qu and Li 2017),
with G* ~ V*+1=% and the innovation term being the differ-

Information sharing across the clients over the network is
implemented mathematically by the use of a mixing matrix
W, defined in accordance with the network topology with

network communication

w;; > 0 forany (i,) € E and w;; = 0 for all (i, 5) ¢ E. ing to their neighbors the compressed quantities C} and
With these notations, we formally introduce EFSkip- {C(A?,, - C;fHT)}i; using mixing matrix W, with C},

BEER in Algorithm 2. At each round ¢, the algorithm main- recording the part of AY that has been sent. Clearly, the pro-

tains X' and an estimator of the global gradients V', i.e., cess is implementable over a network.

each i-th column of V* estimates V f(z!) that is not com- . .

putable by client 7. To facilitate the compression operation, 5.2 Theoretical results of EFSkip-BEER

EFSkip-BEER creates two extra variables H? and G* that We first state the assumptions and then provide the theo-

serve respectively as surrogates of X ‘™1~ and V175 We retical results of EFSkip-BEER in Theorem 2. The local

start describing the algorithm from a computation round ¢ functions f;s are nonconvex satisfying the following aver-

(i.e., t mod s = 0). age smoothness assumption.
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This shows in the communication rounds, clients are send-



Algorithm 2: EFSkip-BEER
Input: initial point 2°, stepsize 1, mixing stepsize 7y, mini-
batch size b, skipsize s
1: Initialize X° = 2017, V0 = VF(X?), H=* = 0,
G =00 =0 Ct =0 X = X
V- s+1 _ VO

2: fort=0,1,2,....,T —1do

3 if t mod s = 0 then

4: Ht — Htfs + C;;l

3: Xt+1 — Xt+1—s + ’}/Hf(W _ I) _ nvt+1—s

6 Gt =Gt + 0571

7 Vit = ViHL=s L yGHW — 1) + V F(XH) —
VbF(Xt'H_S)

8: endif

9: if ¢t mod s = 0 then

10: AO Xt — HY, where H' = H'~* + Ci~*

11 ’6 =C(AY)

12: Ay Vt+1 Gt, where Gt = Gt—° + C’f]_l

13: Ct = C(AY)
14: else
15: Ci=Cr ey -ch

16: Ci=Ci ' +c(A) - Ci )
17:  endif
18: end for

Assumption 3 (Average smoothness) The local function
fi is average L-smooth, i.e., Y,y € R?,

E|Vfi(x) = V@) < Lz —y|.

Also, we make the following standard assumption on the
mixing matrix (Nedi¢, Olshevsky, and Rabbat 2018).

Assumption 4 (Mixing matrix) The mixing matrix W =
[wi;] € [0,1]"*™ is symmetric (W' = W) and doubly
stochastic(W1 = 1,1"W = 17). Let its eigenvalues be
1= MW > | Ae(W)] > -+ > |An(W)|. The spectral
gap satisfies

pi=1—ha(W)| € (0,1]

The theoretical results of EFSkip-BEER for solving the
decentralized nonconvex problem (1) in Theorem 2.

Theorem 2 Suppose that Assumptions 2—4 hold. Let step-
size n = cn5p2 /L, mixing stepsize v = c¢,0p, minibatch

size b = skipsize s = 1Og115 cs, Where cg, o,y are

rL€2 ’
some absolute constants, then the communication complex-
ity and computation complexity for EFSkip-BEER 1o find
an e-solution (i.e., E[||Vf(ZT)||?] < €2) of decentralized
nonconvex problem (1) are as follows:

i) Communication complexity:

_ S _ 3
#rounds = O (p25€2> ,where s = logﬁ Cs.

3We can also simply set the skipsize s = 1 if no compression
(i.e., § = 1) is applied.

ii) Computation complexity:

2

. o 1
#gradlents = O (W —|— p2562> .

6 Faster Convergence Under PL Condition

In this section, we prove faster convergence results of
EFSkip-SGD (Algorithm 1) and EFSkip-BEER (Algo-
rithm 2) for solving both distributed and decentralized non-
convex problem (1), when the global nonconvex function
f in problem (1) satisfies the following Polyak-F.ojasiewicz
(PL) condition (Polyak 1963).

Assumption 5 (PL condition) There exists some constant
i > 0 such that for any © € RY,

IVf(@)? > 2u(f(z) — ). (10)

It is worth noting that PL condition does not imply (strong)
convexity of f(x). For example, f(z) = z? + 3sin’z
is a nonconvex function but it satisfies PL condition with
= 1/32. However, p-strong convexity implies p-PL. As a
result, all results obtained under PL condition directly hold
for strongly convex problems.

Theorem 3 Suppose that Assumptions 1, 2 and 5 hold. Let
stepsize n < min {m, i}, minibatch size b =
1202
nye ’
cation complexity and computanon complexity for EFSkip-
SGD 1o find an e-solution (i.e., E[f(zT) — f*] < €) of dis-
tributed nonconvex problem (1) under PL condition are as
follows:
i) Communication complexity:

, and skipsize s = 1og 1 (2n + 4), then the communi-

1
#rounds = O <Z log ) where s =log _1_ (2n +4),
€

ii) Computation complexity:
2

1 1
#gradients = O (( 02 + =) log ) .
P €

npe

Theorem 4 Suppose that Assumptions 2-5 hold. Let step-
size 1 = ¢,0p*/L, mixing stepsize v = c,0p, minibatch
size b = T:e skipsize s = log 1 Cs, where cs, ¢y, c;, are
some absolute constants, then the commumcanon complex-
ity and computation complexity for EFSkip-BEER to find
an e-solution (i.e., E[f (x7) — f*] < €) of decentralized non-
convex problem (1) under PL condition are as follows:
i) Communication complexity:

1
#rounds = O < log — ) ,where s = 1ogﬁ Cs
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ii) Computation complexity:

o? 1

—_— lo

npdpe + 2(5;) ©8 >
Similar to Theorems 1-2, we can also simply set the skip-

size s = 1 if no compression is applied for Theorems 3—4.

#gradients = O ((
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