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Abstract
Due to the communication bottleneck in distributed and de-
centralized federated learning applications, algorithms using
compressed communication have attracted significant atten-
tion. The Error Feedback (EF) is a widely-studied compres-
sion framework for convergence with biased compressors
such as top-k sparsification. Although various improvements
have been obtained in recent years, the theoretical guaran-
tee for EF-type framework is still limited. Previous works
either 1) rely on strong assumptions such as bounded gradi-
ent/dissimilarity assumptions, thus can not deal with arbitrary
data heterogeneity and also slow the convergence speed, or 2)
can not enjoy linear speedup in the number of clients. In this
work, we propose a new EFSkip framework which removes
the strong assumptions to allow arbitrary data heterogeneity
and enjoys linear speedup for significantly improving upon
previous results. In particular, EFSkip achieves the complex-
ity result O( σ2

nϵ4
+ 1

ϵ2
) while previous EF21 only obtains

O( σ2

δ3ϵ4
+ 1

δϵ2
), i.e., EFSkip enjoys the linear speedup in the

number of clients n (reducing the result linearly using more
clients) and also removes the compression factor δ (match-
ing the result without compression). We also show that EF-
Skip enjoys linear speedup and achieves faster convergence
for nonconvex problems satisfying Polyak-Łojasiewicz (PL)
condition. We believe that the new EFSkip framework will
have a large impact on the communication- and computation-
efficient distributed and decentralized federated learning.

1 Introduction
With the proliferation of mobile and edge devices, federated
learning (FL) (McMahan et al. 2017; Konečný et al. 2016b)
has recently emerged as a disruptive paradigm for training
large-scale machine learning models over a vast amount of
distributed and heterogeneous devices/clients. FL is usually
modeled as a distributed optimization problem (Konečný
et al. 2016a,b; McMahan et al. 2017; Kairouz et al. 2019;
Zhao, Li, and Richtárik 2021; Wang et al. 2021), aiming to
solve

min
x∈Rd

{
f(x;D)

def
=

1

n

n∑
i=1

fi(x;Di)
}
, (1)
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where fi(x;Di)
def
= Eξi∼Di

[fi(x; ξi)]. Here, n denotes the
number of clients and each client i ∈ [n] has a local (non-
convex) loss function fi associated with a local data distri-
bution Di. In particular, fi(x; ξi) denotes the loss function
of model x on a random data sample ξi on client i. For sim-
plicity, we may use f(x) and fi(x) to denote f(x;D) and
fi(x;Di), respectively.

In this work, we consider both distributed (where a cen-
tral server exists and communicates with all n clients) and
decentralized (where there is no server and clients can only
communicate with their neighbors over a network) settings.

1.1 Communication compression and error
feedback

A standard approach to solve (1) in the distributed setting
is using gradient-type algorithms, i.e., each client computes
the (stochastic) gradient of the model on its local dataset and
transmits the gradient to the server, and the server aggregates
all gradient information to update the model and then broad-
casts the updated model to all clients. The steps are repeated
until a stopping criterion is achieved. However, modern ma-
chine learning models are often overparameterized and have
a huge number of parameters (Arora, Cohen, and Hazan
2018), for instance, the language model GPT-3 (Brown et al.
2020) has billions of parameters. The communication cost
forms a main bottleneck of the distributed training system.
A typical method for communication-efficient distributed
learning is compression (Alistarh et al. 2017; Li et al. 2020),
i.e., compress the communicated messages with fewer bits
to reduce the communication cost. For example, each client
can compress its local gradient and transmit the compressed
message to the server. However, naively integrating the com-
pression framework into the communication steps of dis-
tributed algorithms cannot guarantee convergence, as shown
in the following example.

A counter-example. The number of clients is n = 3. The
local loss functions are given by fi(x) = 1

2x
⊤Λix, where

the Λis are diagonal matrices with Λ1 = diag(−4, 3, 3),
Λ2 = diag(3,−4, 3), and Λ3 = diag(3, 3,−4). The al-
gorithm is initialized at x0 = (1, 1, 1)⊤ and the compres-
sor C(·) is top-1 (See Example 1 for the definition of top-
k sparsification). The local gradients for these three clients
at x0 are ∇f1(x

0) = Λ1x
0 = (−4, 3, 3)⊤, ∇f2(x

0) =
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Λ2x
0 = (3,−4, 3)⊤, and ∇f3(x

0) = Λ3x
0 = (3, 3,−4)⊤,

and becomes C(∇f1(x
0)) = (−4, 0, 0)⊤, C(∇f2(x

0)) =
(0,−4, 0)⊤, C(∇f3(x

0)) = (0, 0,−4)⊤ after the top-1 spar-
sification. The server aggregates the compressed gradients
to update the model for the next round, yielding x1 =

x0 − η 1
3

∑3
i=1 C(∇fi(x

0)) = (1 + 4
3η)x

0. Then after t

rounds the iterate xt = (1 + 4
3η)

tx0 diverges exponentially.

Error feedback. The error feedback (EF) (Seide et al. 2014;
Stich, Cordonnier, and Jaggi 2018; Karimireddy et al. 2019),
also known as error compensation, is a popular compression
framework to fix the divergence issues. In EF, each client
maintains a term recording the compression error, and in
each round, instead of directly compressing its local gra-
dient, an error-compensated one is compressed and sent to
the server. More concretely, for the naive direct compression
framework:

cti = C(∇fi(x
t)) (direct compression) (2)

xt+1 = xt − η
1

n

n∑
i=1

cti (model update) (3)

and for the EF compression framework:

cti = C(eti + η∇fi(x
t)) (error compensation) (4)

xt+1 = xt − 1

n

n∑
i=1

cti (model update) (5)

et+1
i = eti + η∇fi(x

t)− cti. (compute the error) (6)

1.2 Data heterogeneity and linear speedup
Although the EF compression framework can fix the di-
vergence of direct compression, previous works are not
able to deal well with the data heterogeneity in fed-
erated learning. To obtain theoretical results, they typi-
cally require some strong assumptions on data heterogene-
ity (see Tables 1–2 for algorithms using EF framework).
Two widely-used assumptions are bounded gradient as-
sumption Eξi∼Di∥∇fi(x; ξi)∥2 ≤ G2, for all clients i ∈
[n] and ∀x ∈ Rd, and bounded dissimilarity assumption
1
n

∑n
i=1 ∥∇fi(x;Di)−∇f(x;D)∥2 ≤ ζ2, ∀x ∈ Rd. 1

Richtárik, Sokolov, and Fatkhullin (2021) proposed a new
EF21 framework to remove these bounded assumptions
and thus can allow arbitrary data heterogeneity among the
clients (see Tables 1–4 for algorithms using EF21). How-
ever, EF21 cannot enjoy linear speedup in the number of
clients n unlike EF, and thus EF21 leads to a worse compu-
tation complexity, i.e., O( σ2

δ3ϵ4 ) vs. the speedup term O( σ2

nϵ4 )
in EF. Several EF21 variants have also been proposed re-
cently (Huang, Li, and Li 2024; Gao, Islamov, and Stich
2024).

1These bounded assumptions are quite strong and even do
not hold for simple quadratic functions, e.g., linear regression.
Let us just consider a 1-dimensional linear regression fi(x) =
(aix − bi)

2 and f(x) = 1
n

∑n
i=1(aix − bi)

2, then the gradient
∥∇fi(x)∥2 = 4(a2

ix − aibi)
2 cannot be bounded by a constant

G2 for ∀x ∈ R, and the dissimilarity ∥∇fi(x) − ∇f(x)∥2 =
4((a2

i − 1
n

∑n
i=1 a

2
i )x

2 − aibi +
1
n

∑n
i=1 aibi)

2 also cannot be
bounded by a constant ζ2 for ∀x ∈ R.

2 Contributions
In order to remove these restrictive assumptions (for al-
lowing arbitrary data heterogeneity) and enjoy the linear
speedup (for reducing the computation complexity linearly
using more clients) simultaneously, we propose a new EF-
Skip framework, which indeed achieve both of the design
objectives (see the last row of Tables 1–4), i.e., EFSkip
can deal with arbitrary data heterogeneity and can en-
joy the linear speedup in the number of clients simulta-
neously, making it a superior compression framework for
communication- and computation-efficient distributed and
decentralized learning. Tables 1–4 present an overview of
the comparison of EFSkip with previous works. We would
like to highlight the following results:

Computation complexity. Although EF21 (Richtárik,
Sokolov, and Fatkhullin 2021; Fatkhullin et al. 2021; Zhao
et al. 2022) removes the bounded gradient/dissimilarity as-
sumptions on data heterogeneity required by EF (i.e., re-
moving the term O(Gϵ3 ) or O( ζ

ϵ3 )), EF21 cannot enjoy the
linear speedup and thus leads to a worse computation com-
plexity compared with EF (i.e., O( σ2

δ3ϵ4 ) vs. O( σ2

nϵ4 )). How-
ever, EFSkip can achieve both goals simultaneously, i.e., re-
moving the heterogeneity term O(Gϵ3 ) or O( ζ

ϵ3 ) and enjoying
linear speedup O( σ2

nϵ4 ) in terms of the number of clients n.
Moreover, compared with the complexity O( σ2

δ3ϵ4 + 1
δϵ2 ) of

EF21, our O( σ2

nϵ4 +
1
ϵ2 ) of EFSkip also removes the depen-

dency on the compression factor δ, and thus matching the
result without compression. Note that δ ∈ (0, 1] is usually
equal to the compression ratio and no compression implies
δ = 1 (see Definition 1 and Example 1 in Section 3).

For nonconvex problems with PL condition (Tables 3–4),
we also show that EFSkip can enjoy linear speedup in the
number of clients n and removes the compression factor δ,
i.e., O( σ2

nµ2ϵ log
1
ϵ ) of EFSkip vs. O( σ2

δ3µ2ϵ log
1
ϵ ) of EF21.

Also, for PL setting in Tables 3–4 (note that there is no result
for EF in this PL setting), both EF21 and EFSkip obtain
better results compared with that without PL condition in
Tables 1-2, and the results in PL setting can directly apply to
strongly convex problems.

Communication complexity. Similar to computation com-
plexity, EFSkip removes the terms G or ζ that depend on the
gradient and data dissimilarity bound, and improves the or-
der O( G

δϵ3 ) or O( ζ
δϵ3 ) of methods using EF to O( s

ϵ2 ) (see
Table 1). Here s stands for the skipsize, and is set to be
s = log 1

1−δ
(n + 2) in EFSkip. Note that s = 1 if no com-

pression (i.e., δ = 1) is applied. In practice, a small constant
s is enough, e.g., s = 4.

2.1 EFSkip vs. the previous EF21 framework
Similar to the comparison between direct compression and
EF provided at the end of Section 1.1, i.e., (2)–(6), in
this section we compare the EF21 framework (Richtárik,
Sokolov, and Fatkhullin 2021) with our EFSkip framework
(see Figure 1).
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Figure 1: EF21 Framework vs. Our EFSkip Framework

Compression
framework

Algorithm
Communication complexity 1

(#communication rounds)
Computation complexity

(#stochastic gradients)
Stong assumption 2

on data heterogeneity
Linear speedup

in #clients n

Error
Feedback

(EF)

Qsparse-SGD
(Basu et al. 2019)

O
(

σ2

nbϵ4
+ nbG2

δ2ϵ2

)
O
(

σ2

nϵ4
+ nb2G2

δ2ϵ2

)
bounded gradient ✓ if n ≤ δσ

bGϵ

CSER
(Xie et al. 2020)

O
(

σ2

nϵ4
+ G

δϵ3
+ 1

ϵ2

)
O
(

σ2

nϵ4
+ G

δϵ3
+ 1

ϵ2

)
bounded gradient ✓ if n ≤ δσ2

Gϵ

NEOLITHIC
(Huang et al. 2022)

O
(

σ2

nϵ4
+ ζθR

δϵ3
+ R

ϵ2

)
O
(

σ2

nϵ4
+ ζθR

δϵ3
+ R

ϵ2

)
3 bounded dissimilarity ✓ if n ≤ δσ2

ζθRϵ

EF21
EF21-SGD

(Richtárik, Sokolov, and Fatkhullin 2021;
Fatkhullin et al. 2021)

O
(

1
δϵ2

)
O
(

σ2

δ3ϵ4
+ 1

δϵ2

)
No p

EFSkip
(this paper)

EFSkip-SGD
(Theorem 1)

O
(

s
ϵ2

)
4 O

(
σ2

nϵ4
+ 1

ϵ2

)
5 No ✓

Table 1: Communication and computation complexity results of algorithms for finding an ϵ-solution E[∥∇f(x̂)∥2] ≤ ϵ2 of
nonconvex problem (1) in distributed setting.

1 In this column of communication complexity, we list the number of communicaiton rounds since all algorithms use the same compression
operator in Definition 1, i.e., the communication bits of the compressed message for each round are the same. Note that communication
complexity = communication rounds × communication bits per round.

2 Here bounded gradient assumption is Eξi∼Di∥∇fi(x; ξi)∥2 ≤ G2, for all clients i ∈ [n] and ∀x ∈ Rd, and bounded disimilarity
assumption is 1

n

∑n
i=1 ∥∇fi(x;Di)−∇f(x;D)∥2 ≤ ζ2, for ∀x ∈ Rd, i.e., the local gradient of loss function on clients are close to the

global gradient. No means that no additional assumption is required, i.e., allowing arbitrary data heterogeneity among the clients.
3 The θ and R ≥ 1 are parameters such that θ := 4(1− δ)R.
4 Here the skipsize s = log 1

1−δ
(n + 2) for EFSkip-SGD (Algorithm 1) in distributed setting. Note that s = 1 if no compression (i.e.,

δ = 1) is applied. In practice, a small constant s is enough, e.g., s = 4.
5 Main result: EFSkip-SGD enjoys the linear speedup in the number of clients n (reducing the computation complexity linearly using

more clients) and also removes the compression factor δ (matching the result without compression). Note that δ ∈ (0, 1] is usually equal
to the compression ratio and no compression implies δ = 1 (see Definition 1). In particular, top-k or random-k sparsification satisfies
Definition 1 with δ = k

d
, where d is the dimension of model (i.e., total number of parameters) in problem (1).
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Compression
framework

Algorithm
Communication complexity

(#communication rounds)
Computation complexity

(#stochastic gradients)
Stong assumption

on data heterogeneity
Linear speedup

in #clients n

Error
Feedback

(EF)

SQuARM-SGD
(Singh et al. 2021)

O
(

σ4

nϵ4
+ nG2

δ2ϵ2

)
O
(

σ4

nϵ4
+ nG2

δ2ϵ2

)
bounded gradient ✓ if n ≤ δσ2

Gϵ

DeepSqueeze
(Tang et al. 2019)

O
(

σ2

nϵ4
+ ζ

δ3/2ϵ3
+ 1

ϵ2

)
O
(

σ2

nϵ4
+ ζ

δ3/2ϵ3
+ 1

ϵ2

)
bounded dissimilarity ✓ if n ≤ δ3/2σ2

ζϵ

CHOCO-SGD
(Koloskova et al. 2020)

O
(

σ2

nϵ4
+ G

δϵ3
+ 1

ϵ2

)
O
(

σ2

nϵ4
+ G

δϵ3
+ 1

ϵ2

)
bounded gradient ✓ if n ≤ δσ2

Gϵ

EF21
BEER

(Zhao et al. 2022)
O
(

1
δϵ2

)
O
(

σ2

δ2ϵ4
+ 1

δϵ2

)
No p

EFSkip
(this paper)

EFSkip-BEER
(Theorem 2)

O
(

s
δϵ2

)
1 O

(
σ2

nδϵ4
+ 1

δϵ2

)
2 No ✓

Table 2: Communication and computation complexity results of algorithms for finding an ϵ-solution E[∥∇f(x̂)∥2] ≤
ϵ2 of nonconvex problem (1) in decentralized setting.

1 Here the skipsize s = log 1
1−δ

cs, where cs is an absolute constant, for EFSkip-BEER (Algorithm 2) in decentralized setting.
2 Main result: EFSkip-BEER also enjoys the linear speedup in the number of clients n for this decentralized setting. Recall

that δ ∈ (0, 1] is usually equal to the compression ratio and no compression implies δ = 1.

Compression
framework

Algorithm
Communication complexity

(#communication rounds)
Computation complexity

(#stochastic gradients)
Linear speedup

in #clients n

EF21
EF21-SGD

(Richtárik, Sokolov, and Fatkhullin 2021;
Fatkhullin et al. 2021)

O
(

1
δµ log 1

ϵ

)
O
(
( σ2

δ3µ2ϵ
+ 1

δµ ) log 1
ϵ

)
p

EFSkip
(this paper)

EFSkip-SGD
(Theorem 3)

O
(

s
µ log 1

ϵ

)
O
(
( σ2

nµ2ϵ
+ 1

µ ) log 1
ϵ

)
✓

Table 3: Communication and computation complexity results of algorithms for finding an ϵ-solution
E[f(x̂) − f∗] ≤ ϵ of nonconvex problem (1) in distributed setting under PL condition (i.e., the global
function f(x) satisfies PL condition (10)). Note that µ-strong convexity implies µ-PL. As a result, all results
obtained under PL condition directly hold for strongly convex problems.

1 Here the skipsize s = log 1
1−δ

(2n+ 4) for EFSkip-SGD in the distributed PL setting.
2 Main result: EFSkip-SGD also enjoys the linear speedup in the number of clients n for the distributed PL setting.

Recall that δ ∈ (0, 1] is usually equal to the compression ratio and no compression implies δ = 1.

Compression
framework

Algorithm
Communication complexity

(#communication rounds)
Computation complexity

(#stochastic gradients)
Linear speedup

in #clients n

EF21
BEER

(Zhao et al. 2022)
O
(

1
δµ log 1

ϵ

)
O
(
( σ2

δ2µ2ϵ
+ 1

δµ ) log 1
ϵ

)
p

EFSkip
(this paper)

EFSkip-BEER
(Theorem 4)

O
(

s
δµ log 1

ϵ

)
O
(
( σ2

nδµ2ϵ
+ 1

δµ ) log 1
ϵ

)
✓

Table 4: Communication and computation complexity results of algorithms for finding an
ϵ-solution E[f(x̂) − f∗] ≤ ϵ of nonconvex problem (1) in decentralized setting under
PL condition. Similarly, all results obtained under PL condition directly hold for strongly
convex problems.

1 Here the skipsize s = log 1
1−δ

cs, where cs is an absolute constant, for EFSkip-BEER in the
decentralized PL setting.

2 Main result: EFSkip-BEER also enjoys the linear speedup in the number of clients n for this
decentralized PL setting.
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In particular, EFSkip can reduce to EF21 with skipsize
s = 1 since t mod 1 is always equal to 0. With our new EF-
Skip compression framework, we propose two algorithms i)
EFSkip-SGD (Algorithm 1) for the nonconvex distributed
setting in Section 4; ii) EFSkip-BEER (Algorithm 2) for the
nonconvex decentralized setting in Section 5.

3 Preliminaries
Let [n] denote the set {1, 2, · · · , n} and ∥ · ∥ denote the Eu-
clidean norm of a vector. Let 1 denote the all-ones vector.
Let ⟨u, v⟩ denote the inner product of vectors u and v, and
u⊙v denote the element-wise product. Let a mod b denote
the remainder of a divided by b. Let f∗ := minx∈Rd f(x) >
−∞ denote the optimal value of the objective function
in (1). We use O(·) to hide the absolute constants.

Compression, in the form of sparsification or quantiza-
tion, can be used to reduce the communication cost. We now
introduce the notion of a general biased compression oper-
ator widely used in many distributed and federated learn-
ing algorithms, e.g., (Stich, Cordonnier, and Jaggi 2018;
Koloskova et al. 2020; Richtárik, Sokolov, and Fatkhullin
2021; Fatkhullin et al. 2021; Richtárik et al. 2022).
Definition 1 (Compression operator) A (randomized)
map C : Rd 7→ Rd is a biased compression operator if there
exists a 0 < δ ≤ 1, such that for all x ∈ Rd,

E
[
∥C(x)− x∥2

]
≤ (1− δ)∥x∥2. (7)

In particular, no compression (C(x) ≡ x) implies δ = 1.
Compared with an unbiased compression operator used in,
e.g., (Alistarh et al. 2017; Khirirat, Feyzmahdavian, and Jo-
hansson 2018; Mishchenko et al. 2019; Li and Richtárik
2020; Li and Richtárik 2021; Zhao et al. 2021), the general
compression operator in Definition 1 does not impose the
additional constraint such that E[C(x)] = x. Moreover, the
unbiased compression operator can be converted into a bi-
ased one satisfying Definition 1, i.e., for any unbiased com-
pression operator C′ : Rd 7→ Rd that satisfies E[C′(x)] = x
and E[∥C′(x) − x∥2] ≤ ω∥x∥2, we can construct a biased
compression operator C : C(x) = C′(x)

1+ω and the new com-
pression operator satisfies Definition 1 with δ = 1

1+ω . Note
that ω can be larger than 1 for unbiased compressors. Thus,
Definition 1 is a generalization of the unbiased compression.
Example 1 The top-k sparsification keeps the coordinates
with the top-k largest absolute values, i.e., topk(x) := x ⊙
ux, where ux ∈ {0, 1}d satisfying ∥ux∥1 = k and ux(i) = 1
iff |xi| ≥ |xj | for all j with ux(j) = 0. In particular, topk is
a δ-compression operator with δ = k

d , i.e., satifies (7) as

E
[
∥topk(x)− x∥2

]
≤

(
1− k

d

)
∥x∥2. (8)

Besides, random-k that randomly keeps k coordinates is
also a δ-compression operator with δ = k

d .

4 EFSkip for Distributed Setting
For the nonconvex problem (1) in the distributed setting
where a central server exists and communicates with all n
clients, we propose the EFSkip-SGD (Algorithm 1) and
provide its theoretical results.

4.1 EFSkip-SGD algorithm
Now we formally describe the distributed SGD with our
EFSkip compression framework as EFSkip-SGD in Algo-
rithm 1. We would like to highlight that the clients only com-
pute their local stochastic gradients once every s rounds.

4.2 Theoretical results of EFSkip-SGD
Before providing the theoretical results of EFSkip-SGD,
we first state the following standard assumptions (Nesterov
2004; Ghadimi and Lan 2013; Li et al. 2021; Li, Hanzely,
and Richtárik 2021; Li and Li 2022).
Assumption 1 (Smoothness) The local function fi is L-
smooth, i.e., ∀x, y ∈ Rd,

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
We point out that Assumption 1 can be relaxed to the average
smoothness assumption Ei[∥∇fi(x)−∇fi(y)∥2] ≤ L2∥x−
y∥2 which does not affect the results obtained in this work.

During the training, the clients are allowed to compute
stochastic gradients sampled from their local data distribu-
tions (see Line 9 of Algorithm 1). We make the following
standard assumption for the stochastic gradients.

Assumption 2 (Stochastic gradient) Let ∇̃fi(x) :=
∇fi(x; ξi) denote a stochastic gradient computed by client
i via a sample ξi drawn i.i.d. from its local data distribution
Di, we have

E∥∇̃fi(x)−∇fi(x)∥2 ≤ σ2. (9)

Let ∇̃bfi(x) := 1
b

∑b
j=1 ∇fi(x; ξi,j) denote the stochastic

gradient computed by a minibatch with size b drawn i.i.d.
from Di, it is not hard to see E∥∇̃bfi(x)−∇fi(x)∥2 ≤ σ2

b .
Now we provide the theoretical results of EFSkip-SGD

for solving the distributed nonconvex problem (1).
Theorem 1 Suppose that Assumptions 1 and 2 hold. Let
stepsize η ≤ 1

(1+
√

4/n)L
, minibatch size b = 20σ2

nϵ2 , and skip-

size s = log 1
1−δ

(n+2), then the communication complexity
and computation complexity for EFSkip-SGD to find an ϵ-
solution (i.e., E[∥∇f(x̂T )∥2] ≤ ϵ2) of distributed nonconvex
problem (1) are as follows:

i) Communication complexity is computed as the total
number of communication rounds (denoted as #rounds)
times the communicated bits per round (denoted as dδ):

#rounds = O
( s

ϵ2

)
, where skipsize s = log 1

1−δ
(n+ 2), 2

and the communicated bits per round dδ depends on the
compression operator (Definition 1) used by Algorithm 1,
e.g., for top-k sparsification (see Example 1) dδ = O(k).
Note that no compression C(x) ≡ x implies dδ = O(d).

ii) Computation complexity is computed as the total
number of stochastic gradient computations (denoted as
#gradients):

#gradients = O

(
σ2

nϵ4
+

1

ϵ2

)
.

2Note that we can simply set s = 1 if no compression (i.e.,
δ = 1) is applied.
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Algorithm 1: EFSkip-SGD

Input: initial point x0, stepsize η, minibatch size b, skipsize s

1: Initialize c−1
i = 0, g−s

i = C(g̃0i ), g̃0i = 1
b

∑b
j=1 ∇fi(x

0; ξi,j), c−1 = 1
n

∑n
i=1 c

−1
i , g−s = 1

n

∑n
i=1 g

−s
i , x−s+1 = x0

2: for t = 0, 1, 2, . . . , T − 1 do
3: if t mod s = 0 then
4: gt = gt−s + ct−1

5: Server updates xt+1 = xt+1−s − ηgt and broadcasts xt+1 to all clients
6: end if
7: for each client i ∈ [n] do in parallel
8: if t mod s = 0 then
9: Compute stochastic gradients g̃t+1

i = 1
b

∑b
j=1 ∇fi(x

t+1; ξi,j)

10: ∆0
i = g̃t+1

i − gti , where gti = gt−s
i + ct−1

i //this gradient information ∆0
i will be reused for s rounds

11: Compress cti = C(∆0
i ) and send it to the server

12: else //skip gradient computations via reusing ∆0
i

13: Compress C(∆0
i − ct−1

i ) and send it to the server
14: Update cti = ct−1

i + C(∆0
i − ct−1

i )
15: end if
16: end for

17: Server aggregates compressed info ct =

{
1
n

∑n
i=1 C(∆0

i ) if t mod s = 0

ct−1 + 1
n

∑n
i=1 C(∆0

i − ct−1
i ) if t mod s ̸= 0

18: end for

5 EFSkip for Decentralized Setting
For the nonconvex problem (1) in decentralized setting
where there is no server and clients can only communicate
with their neighbors over a prescribed network topology, we
propose the EFSkip-BEER (Algorithm 2) and provide its
theoretical results.

5.1 EFSkip-BEER algorithm
In the decentralized setting, the clients can only communi-
cate with their local neighbors over a prescribed communi-
cation network, modeled by an undirected graph G([n], E).
Here, each node i ∈ [n] represents a client, and (i, j) ∈ E if
there is a communication link between client i and j.

Since clients cannot synchronize in one shot, we let
each client i hold a local replicate of the parameter
x, denoted as xi and use X := [x1, x2, ..., xn] ∈
Rd×n to denote the parameters of all clients. Similarly,
the collection of local gradients and stochastic mini-
batches computed by the clients are respectively given by
∇F (X) := [∇f1(x1),∇f2(x2), ...,∇fn(xn)] ∈ Rd×n and
∇̃bF (X) := [∇̃bf1(x1), ∇̃bf2(x2), ..., ∇̃bfn(xn)] ∈ Rd×n.
Information sharing across the clients over the network is
implemented mathematically by the use of a mixing matrix
W , defined in accordance with the network topology with
wij ≥ 0 for any (i, j) ∈ E and wij = 0 for all (i, j) /∈ E.

With these notations, we formally introduce EFSkip-
BEER in Algorithm 2. At each round t, the algorithm main-
tains Xt and an estimator of the global gradients V t, i.e.,
each i-th column of V t estimates ∇f(xt

i) that is not com-
putable by client i. To facilitate the compression operation,
EFSkip-BEER creates two extra variables Ht and Gt that
serve respectively as surrogates of Xt+1−s and V t+1−s. We
start describing the algorithm from a computation round t
(i.e., t mod s = 0).

Model and gradient update. The clients update their lo-
cal models using a perturbed average consensus mechanism
(Line 5 of Algorithm 2). Since Ht ≈ Xt+1−s, the first two
terms correspond to averaging the local parameters using the
graph Laplacian I − W . The third term is a descent step
with gradient estimator V t+1−s ≈ ∇F (Xt+1−s). With the
newly computed minibatch gradient at Xt+1, the estimator
V is updated in Line 7 of Algorithm 2 using a gradient track-
ing scheme (Zhu and Martı́nez 2010; Di Lorenzo and Scu-
tari 2016; Nedić, Olshevsky, and Shi 2017; Qu and Li 2017),
with Gt ≈ V t+1−s and the innovation term being the differ-
ence of the two last computed gradients.

Compression. Right after computing the new Xt+1, we in-
voke the EFSkip compression and compute the increment
∆0

h in Line 10 of Algorithm 2. To better illustrate the sub-
sequent communication steps, we combine Line 15 and 4 of
Algorithm 2 and rewrite Ht+sW , which will be used in the
next computation round t+ s, as:

Ht+sW = HtW +
(
Ct

h +
s−1∑
τ=1

C(∆0
h − Ct−1+τ

h )
)
W︸ ︷︷ ︸

network communication

.

This shows in the communication rounds, clients are send-
ing to their neighbors the compressed quantities Ct

h and
{C(∆0

h − Ct−1+τ
h )}s−1

τ=1 using mixing matrix W , with Ch

recording the part of ∆0
h that has been sent. Clearly, the pro-

cess is implementable over a network.

5.2 Theoretical results of EFSkip-BEER
We first state the assumptions and then provide the theo-
retical results of EFSkip-BEER in Theorem 2. The local
functions fis are nonconvex satisfying the following aver-
age smoothness assumption.
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Algorithm 2: EFSkip-BEER
Input: initial point x0, stepsize η, mixing stepsize γ, mini-
batch size b, skipsize s

1: Initialize X0 = x01⊤, V 0 = ∇F (X0), H−s = 0,
G−s = 0, C−1

h = 0, C−1
g = 0, X−s+1 = X0,

V −s+1 = V 0

2: for t = 0, 1, 2, ..., T − 1 do
3: if t mod s = 0 then
4: Ht = Ht−s + Ct−1

h

5: Xt+1 = Xt+1−s + γHt(W − I)− ηV t+1−s

6: Gt = Gt−s + Ct−1
g

7: V t+1 = V t+1−s + γGt(W − I) + ∇̃bF (Xt+1)−
∇̃bF (Xt+1−s)

8: end if
9: if t mod s = 0 then

10: ∆0
h = Xt+1 −Ht, where Ht = Ht−s + Ct−1

h

11: Ct
h = C(∆0

h)
12: ∆0

g = V t+1 −Gt, where Gt = Gt−s + Ct−1
g

13: Ct
g = C(∆0

g)
14: else
15: Ct

h = Ct−1
h + C(∆0

h − Ct−1
h )

16: Ct
g = Ct−1

g + C(∆0
g − Ct−1

g )
17: end if
18: end for

Assumption 3 (Average smoothness) The local function
fi is average L-smooth, i.e., ∀x, y ∈ Rd,

E∥∇̃fi(x)− ∇̃fi(y)∥2 ≤ L2∥x− y∥2.

Also, we make the following standard assumption on the
mixing matrix (Nedić, Olshevsky, and Rabbat 2018).

Assumption 4 (Mixing matrix) The mixing matrix W =
[wij ] ∈ [0, 1]n×n is symmetric (W⊤ = W ) and doubly
stochastic(W1 = 1,1⊤W = 1⊤). Let its eigenvalues be
1 = |λ1(W )| ≥ |λ2(W )| ≥ · · · ≥ |λn(W )|. The spectral
gap satisfies

ρ := 1− |λ2(W )| ∈ (0, 1].

The theoretical results of EFSkip-BEER for solving the
decentralized nonconvex problem (1) in Theorem 2.

Theorem 2 Suppose that Assumptions 2–4 hold. Let step-
size η = cηδρ

2/L, mixing stepsize γ = cγδρ, minibatch
size b = 2σ2

nϵ2 , skipsize s = log 1
1−δ

cs, where cs, cγ , cη are
some absolute constants, then the communication complex-
ity and computation complexity for EFSkip-BEER to find
an ϵ-solution (i.e., E[∥∇f(x̂T )∥2] ≤ ϵ2) of decentralized
nonconvex problem (1) are as follows:

i) Communication complexity:

#rounds = O

(
s

ρ2δϵ2

)
,where s = log 1

1−δ
cs.

3

3We can also simply set the skipsize s = 1 if no compression
(i.e., δ = 1) is applied.

ii) Computation complexity:

#gradients = O

(
σ2

nρ2δϵ4
+

1

ρ2δϵ2

)
.

6 Faster Convergence Under PL Condition
In this section, we prove faster convergence results of
EFSkip-SGD (Algorithm 1) and EFSkip-BEER (Algo-
rithm 2) for solving both distributed and decentralized non-
convex problem (1), when the global nonconvex function
f in problem (1) satisfies the following Polyak-Łojasiewicz
(PL) condition (Polyak 1963).
Assumption 5 (PL condition) There exists some constant
µ > 0 such that for any x ∈ Rd,

∥∇f(x)∥2 ≥ 2µ(f(x)− f∗). (10)

It is worth noting that PL condition does not imply (strong)
convexity of f(x). For example, f(x) = x2 + 3 sin2 x
is a nonconvex function but it satisfies PL condition with
µ = 1/32. However, µ-strong convexity implies µ-PL. As a
result, all results obtained under PL condition directly hold
for strongly convex problems.

Theorem 3 Suppose that Assumptions 1, 2 and 5 hold. Let
stepsize η ≤ min

{
1

(1+
√

4/n)L
, 1
2µ

}
, minibatch size b =

12σ2

nµϵ , and skipsize s = log 1
1−δ

(2n + 4), then the communi-
cation complexity and computation complexity for EFSkip-
SGD to find an ϵ-solution (i.e., E[f(xT ) − f∗] ≤ ϵ) of dis-
tributed nonconvex problem (1) under PL condition are as
follows:

i) Communication complexity:

#rounds = O

(
s

µ
log

1

ϵ

)
,where s = log 1

1−δ
(2n+ 4),

ii) Computation complexity:

#gradients = O

(( σ2

nµ2ϵ
+

1

µ

)
log

1

ϵ

)
.

Theorem 4 Suppose that Assumptions 2–5 hold. Let step-
size η = cηδρ

2/L, mixing stepsize γ = cγδρ, minibatch
size b = σ2

nµϵ , skipsize s = log 1
1−δ

cs, where cs, cγ , cη are
some absolute constants, then the communication complex-
ity and computation complexity for EFSkip-BEER to find
an ϵ-solution (i.e., E[f(xT )−f∗] ≤ ϵ) of decentralized non-
convex problem (1) under PL condition are as follows:

i) Communication complexity:

#rounds = O

(
s

ρ2δµ
log

1

ϵ

)
,where s = log 1

1−δ
cs

ii) Computation complexity:

#gradients = O

(( σ2

nρ2δµ2ϵ
+

1

ρ2δµ

)
log

1

ϵ

)
.

Similar to Theorems 1–2, we can also simply set the skip-
size s = 1 if no compression is applied for Theorems 3–4.
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ficient Nonconvex Finite-Sum Optimization with Zero Full
Gradient Computation. arXiv preprint arXiv:2103.01447.

Li, Z.; Kovalev, D.; Qian, X.; and Richtárik, P. 2020. Ac-
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