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Section 1

Introduction and Related Works
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General Problem Setting

1 one central server and N clients
2 each client holds M data (for simplicity)
3 the clients can communicate with the central server but cannot

connect with other clients
4 there is a global model on the server, and the clients communicates

with the server to update the model

Figure: A federated learning application. The figure comes from the link.1

1https://blog.ml.cmu.edu/2019/11/12/federated-learning-challenges-methods-and-
future-directions/
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General Problem Setting
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General Problem Setting

1 at each communication round r , the server broadcast the current
model x r to some clients S r

2 the clients computes some function g r
i and transfer back to the server

3 the server update the model according to g r
i
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Challenges

Challenges

Communication is 
expensive

Privacy 
issue

Data are 
heterogeneous
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Challenges

1 we do not transfer the data to the central server (privacy issue2 X)
2 we do not assume {fi} or {fi ,j} to have similarity: we view them as

arbitrary functions (heterogeneity issue (non IID issue) X)
3 how about the expensive communication (communication issue ?)

Challenges

Communication is 
expensive

Privacy 
issue

Data are 
heterogeneous

2Here transferring the gradient may also leak the personal information, but we do not
consider this ‘advanced’ privacy in this project. Please refer to more differential privacy
works for more information.
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Related Works

There are two lines of work to overcome the communication problem:
compression operators and local methods.

Communicate 
less

Figure: Compression operators:
communicate less during one
communication round

Do more work

Figure: Local methods: work more
during one communication round
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Related Works — Compression Operators
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Figure: Compression operators: each device send the compressed information to
the central server.
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Related Works — Compression Operators

1 QSGD [Alistarh et al., 2017]: compressed version of SGD

2 SignSGD [Bernstein et al., 2018]: compressed version of SGD

3 DIANA [Mishchenko et al., 2019]: compressed version of SVRG

4 ADIANA [Li et al., 2020]: accelerated version of DIANA
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Related Works — Local Methods
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Figure: Local methods: each device perform multiple local updates before
communicating with the central server.
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Related Works — Local Methods

1 FedAvg [McMahan et al., 2017]: Stochastic gradient descent(SGD)
with local steps

2 Local-SVRG [Gorbunov et al., 2020]: SVRG[Johnson and Zhang, 2013]
with local steps

3 SCAFFOLD [Karimireddy et al., 2020]: SAGA[Defazio et al., 2014] with
local steps

4 FedPAGE (this paper): PAGE[Li et al., 2021] with local steps
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Section 2

Problem Setting and Assumptions
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Problem Setting
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Problem Setting

Nonconvex Setting:

1 All functions can be nonconvex.

2 We want to find x such that E‖∇f (x)‖ ≤ ε.

Convex Setting:

1 We assume f (x) is convex, and fi (x) may be nonconvex.

2 We want to find x such that Ef (x)− f ∗ ≤ ε.

Haoyu Zhao (Princeton University) FedPAGE August 11, 2021 17 / 41



Assumptions

Assumption (L-smoothness)

All functions fi ,j : Rd → R for all i ∈ [N], j ∈ [M] are L-smooth. That is,
there exists L ≥ 0 such that for all x1, x2 ∈ Rd and all i ∈ [N], j ∈ [M],

‖∇fi ,j(x1)−∇fi ,j(x2)‖ ≤ L‖x1 − x2‖.

Can be generalized to different functions are Li ,j smooth.

Assumption (Bounded Variance)

There exists σ ≥ 0 such that for any client i ∈ [N] and x ∈ Rd ,

1

M

M∑
j=1

‖∇fi ,j(x)−∇fi (x)‖2
2 ≤ σ2.
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Section 3

FedPAGE Algorithm
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PAGE in the federated learning setting

Algorithm 1 PAGE in the federated learning setting

1: for r = 1, 2, . . . ,R do
2: sample q ∼ Bernoulli(pr )
3: if q = 1 then
4: clients S r = [N], communicate x r to all i ∈ S r

5: clients i ∈ S r compute g r
i ← ∇fi (x r )

6: g r ← 1
|S r |
∑

i∈S r g r
i

7: else
8: clients S r ⊆ [N] with size S , send (x r , x r−1, g r−1) to all i ∈ S r

9: clients i ∈ S r compute g r
i ← ∇fi (x r )−∇fi (x r−1) + g r−1

10: g r ← 1
|S r |
∑

i∈S r g r
i

11: end if
12: x r+1 ← x r − ηgg r

13: end for
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Add local steps to PAGE: FedPAGE-Full

Algorithm 2 LocalSteps-Full

1: procedure LocalSteps-Full(i , x r , x r−1, g r−1)
2: y ri ,0 ← x r

3: g r
i ,0 ← ∇fi (x r )−∇fi (x r−1) + g r−1

4: y ri ,1 ← y ri ,0 − ηlg r
i ,0

5: for k = 1, 2, . . . ,K − 1 do
6: g r

i ,k ← ∇fi (y ri ,k)−∇fi (y ri ,k−1) + g r
i ,k−1

7: y ri ,k+1 ← y ri ,k − ηlg r
i ,k

8: end for
9: ∆y ri ← x r − y ri ,K

10: return ∆y ri
11: end procedure

1 We add local steps to PAGE when the server does not communicate
with all clients (q = 0)
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Add local steps to PAGE: FedPAGE-Full

Algorithm 3 FedPAGE-Full

1: for r = 1, 2, . . . ,R do
2: sample q ∼ Bernoulli(pr )
3: if q = 1 then
4: clients S r = [N], communicate x r to all i ∈ S r

5: clients i ∈ S r compute g r
i ← ∇fi (x r ) and send to the server

6: g r ← 1
|S r |
∑

i∈S r g r
i

7: else
8: clients S r ⊆ [N] with size S , send (x r , x r−1, g r−1) to all i ∈ S r

9: ∆y ri ← LocalSteps-Full(i , x r , x r−1, g r−1)
10: g r ← 1

Kηl |S r |
∑

i∈S r ∆y ri
11: end if
12: x r+1 ← x r − ηgg r

13: end for
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Optimize the local steps: FedPAGE

1 FedPAGE-Full computes K local full gradients at each client when
performing local steps, which is time consuming (procedure
LocalSteps-Full)

2 when M is very large, computing the local full gradient may not be
affordable
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Optimize the local steps: FedPAGE

𝑔𝑖,0
𝑟 = 𝛻𝑓𝑖 𝑥

𝑟 − 𝛻𝑓𝑖 𝑥
𝑟−1 + 𝑔𝑟−1

𝑔𝑖,𝑘+1
𝑟 = 𝑔𝑖,𝑘

𝑟 + 𝛻𝑓𝑖 𝑦𝑖,𝑘+1
𝑟 − 𝛻𝑓𝑖 𝑦𝑖,𝑘

𝑟

𝑔𝑖,0
𝑟 = 𝛻𝑓𝑖 𝑥

𝑟 − 𝛻𝑓𝑖 𝑥
𝑟−1 + 𝑔𝑟−1

𝑔𝑖,𝑘+1
𝑟 = 𝑔𝑖,𝑘

𝑟 + 𝛻𝑓𝑖,𝑗 𝑦𝑖,𝑘+1
𝑟 − 𝛻𝑓𝑖,𝑗 𝑦𝑖,𝑘

𝑟

Update rule in 
LocalSteps-Full

1

2

3

𝑔𝑖,0
𝑟 = 𝛻ℐ2𝑓𝑖 𝑥

𝑟 − 𝛻ℐ2𝑓𝑖 𝑥
𝑟−1 + 𝑔𝑟−1

𝑔𝑖,𝑘+1
𝑟 = 𝑔𝑖,𝑘

𝑟 + 𝛻𝑓𝑖,𝑗 𝑦𝑖,𝑘+1
𝑟 − 𝛻𝑓𝑖,𝑗 𝑦𝑖,𝑘

𝑟

Use a large batch

Haoyu Zhao (Princeton University) FedPAGE August 11, 2021 24 / 41



Optimize the local steps: FedPAGE

When M is very large and we cannot compute the local full gradient, we
use large minibatch to estimate the local full gradient.

Algorithm 4 LocalSteps

1: procedure LocalSteps(i , x r , x r−1, g r−1)
2: y ri ,0 ← x r

3: g r
i ,0 ← ∇I2fi (x

r )−∇I2fi (x
r−1) + g r−1

4: y ri ,1 ← y ri ,0 − ηlg r
i ,0

5: for k = 1, 2, . . . ,K − 1 do
6: sample j ∈ [M], g r

i ,k ← ∇fi ,j(y ri ,k)−∇fi ,j(y ri ,k−1) + g r
i ,k−1

7: y ri ,k+1 ← y ri ,k − ηlg r
i ,k

8: end for
9: ∆y ri ← x r − y ri ,K

10: return ∆y ri
11: end procedure
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Optimize the local steps: FedPAGE

Algorithm 5 FedPAGE

1: for r = 1, 2, . . . ,R do
2: sample q ∼ Bernoulli(pr )
3: if q = 1 then
4: clients S r = [N], communicate x r to all i ∈ S r

5: clients i ∈ S r compute g r
i ← ∇I1fi (x

r ) and send to the server
6: g r ← 1

|S r |
∑

i∈S r g r
i

7: else
8: clients S r ⊆ [N] with size S , send (x r , x r−1, g r−1) to all i ∈ S r

9: ∆y ri ← LocalSteps(i , x r , x r−1, g r−1)
10: g r ← 1

Kηl |S r |
∑

i∈S r ∆y ri
11: end if
12: x r+1 ← x r − ηgg r

13: end for
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Section 4

Convergence Results
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Convergence in the Nonconvex Setting

Theorem (Convergence of FedPAGE in nonconvex setting)

Under standard assumptions, if we choose the parameters properly,
FedPAGE will find a point x such that E‖∇f (x)‖2 ≤ ε within the following
number of communication rounds:

R = O

(
L(
√
N + S)

Sε2

)
.

1 The number of communication round is O(
√
N/(Sε2)) when

S ≤
√
N, which matches the convergence rate of PAGE

2 The total communication complexity is O(N +
√
N/ε2), because we

communicate with all the clients in the first round
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Convergence in the Nonconvex Setting

FedPAGE

SCAFFOLD

𝑁
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3
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By a factor 
𝑁1/6𝑆1/3

By a factor 
𝑁1/6𝑆1/3

1 SCAFFOLD[Karimireddy et al., 2020]: State-of-the-art, ICML 2020

2 FedPAGE is more suitable when N is very large, e.g. federated learning
applications related to mobile phones or PCs.
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Convergence in the Convex Setting

Theorem (Convergence of FedPAGE in convex setting)

Under standard assumptions, if we choose the parameters properly,
FedPAGE will find a point x such that Ef (x)− f ∗ ≤ ε with the number of
communication rounds bounded by

R = O

(
N3/4L

Sε

)
.

1 The number of communication round is O(N3/4/(Sε)) when S ≤
√
N

2 The total communication complexity is O(N + N3/4/ε), because we
communicate with all the clients in the first round
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Convergence in the Convex Setting

FedPAGE

SCAFFOLD

𝑁3/4

𝑆𝜖

𝑁

𝑆𝜖

𝑁3/4

𝜖

𝑁

𝜖

Communication rounds Total communication complexity
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𝑁1/4

By a factor 
𝑁1/4
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Section 5

Proof Sketch
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Proof Idea in the Nonconvex Setting

1 The main part is to bound the ‘variance term’. We bound
E‖g r −∇f (x r )‖2

2 It is easy to bound E‖ 1
S

∑
i∈S r g r

i ,0 −∇f (x r )‖2 (main lemma in
PAGE)

3 Bound E‖ 1
S

∑
i∈S r g r

i ,0 − g r‖2

4 Bound 1
K

∑K−1
k=0 Er‖g r

i ,k − g r
i ,0‖2, for any i , k , r

5 If ηl is small, then y ri ,k ≈ x r , g r
i ,k ≈ g r

i ,0, and the above equation will
be small

Haoyu Zhao (Princeton University) FedPAGE August 11, 2021 33 / 41



Proof Idea in the Convex Setting

1 PAGE/FedPAGE uses biased gradient estimator, need to bound the
following inner product term.

2 We can bound the inner product
∑t

r=1 E〈∇f (x r )− g r , x r − x∗〉
3 For FedPAGE, we still need to consider the ‘local error’ generated

from the local steps.

4 Use the bounds on 1
K

∑K−1
k=0 Er‖g r

i ,k − g r
i ,0‖2, for any i , k , r
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Section 6

Numerical Experiments
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Experiments Setup

1 We set the objectives to be robust linear regression and logistic
regression with nonconvex regularizer

2 The objective function for robust linear regression is

f (x) = 1
n

n∑
i=1

`(xTai − bi ), where `(t) = log(1 + t2

2 )

3 The objective function for logistic regression with nonconvex

regularizer is f (x) = 1
n

n∑
i=1

log
(
1 + exp(−bixTai )

)
+ α

d∑
j=1

x2
j

1+x2
j

4 We perform two experiments: the first shows the effectiveness of local
steps, and the second compares FedPAGE with other methods.
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Effectiveness of Local Steps
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Figure: Robust linear regression on a9a dataset
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Figure: Robust linear regression on w8a dataset
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Superiority over Other Methods
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Figure: Robust linear regression on a9a with 3250 clients (each with 10 sample)
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Figure: Robust linear regression on w8a with 4800 clients (each with 10 sample)
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Superiority over Other Methods
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Figure: Logistic regression with nonconvex regularizer on a9a with 3250 clients
(each with 10 sample)
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Figure: Logistic regression with nonconvex regularizer on w8a with 4800 clients
(each with 10 sample)
Haoyu Zhao (Princeton University) FedPAGE August 11, 2021 39 / 41



Conclusion

1 We design FedPAGE algorithm, which is a communication-efficient
local method for federated learning.

2 From theory, we improve the communication rounds and
communication complexity of the state-of-the-art SCAFFOLD.

3 From experiments, we show the effectiveness of local steps and
superiority of FedPAGE over other existed methods.
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