

Optimal In-Place Suffix Sorting

Zhize Li, Jian Li, Hongwei Huo

IIIS, Tsinghua University https://zhizeli.github.io/

October 10th, SPIRE 2018

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

Problem Definition

Suffix array is a fundamental data structure introduced by Manber and Myers as a **space-saving** alternative to suffix trees in SODA'90.

- Definition:
 - Given a string T[0..n-1], each T[i] belongs to an integer alphabet Σ
 - *Suffix*: suf(i) is a substring T[i...n-1] (from index i to the end of T)
 - *Suffix array* **SA** contains the **indices** of all sorted suffixes
- Example:
 - If T="130" (integer alphabet), then all suffixes are {130, 30, 0}
 - suf(2)<suf(0)<suf(1), i.e. 0<130<30 (in lexicographical order)
 - **SA=[2,0,1]** suf(SA[i]) < suf(SA[j]) for all i<j
- Problem:

Construct the suffix array SA for a given string T[0...n-1]

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

- Manber and Myers [MM90] constructed the SA using a doubling technique.
 - beginning characters -> first two characters-> first four characters.... Time: O(nlogn) Space: O(n) workspace

Workspace denotes the **total space** used by an algorithm except for the **input string T** and the **suffix array SA**.

- Manber and Myers [MM90] constructed the SA using a doubling technique.
 - beginning characters -> first two characters-> first four characters.... Time: O(nlogn) Space: O(n) workspace
- In 2003, the first linear time algorithms were obtained by [KSPP03,KS03,KA03] using the divide-and-conquer technique. Time: T(n)=T(cn)+O(n)=O(n) Space: O(n) workspace

- Manber and Myers [MM90] constructed the SA using a doubling technique.
 - beginning characters -> first two characters-> first four characters.... Time: O(nlogn) Space: O(n) workspace
- In 2003, the first linear time algorithms were obtained by [KSPP03,KS03,KA03] using the divide-and-conquer technique. Time: T(n)=T(cn)+O(n)=O(n) Space: O(n) workspace
- Bottleneck: space

• Open problem [Franceschini and Muthukrishnan, ICALP'07]:

- Design in-place (O(1) workspace) and o(nlogn) time algorithms for integer alphabets Σ with $|\Sigma| \le n$.
- Ultimate goal: design *in-place algorithms*, and maintain the optimal O(n) time complexity.
- Previous best result [Nong, TOIS'13]: Time: O(n) Space: $|\Sigma| + O(1)$ workspace

Theorem. Our optimal *in-place* algorithm takes O(n) time to compute the suffix array even if the string T is read-only and $|\Sigma| = O(n)$.

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

Our Results

Time	Workspace (words)	Algorithms	
$O(n^2)$	O(n)	[SS07]	
$O(n\log^2 n)$	O(n)	[Sad98]	
$O(n\sqrt{ \Sigma \log(n/ \Sigma)})$	O(n)	[BB05]	
$O(n \log n)$	O(n)	[MM90, LS07]	
$O(n \log \log n)$	O(n)	[KJP04]	
O(n)	O(n)	[KSPP03, KS03, KA03]	
$O(n \log \log \Sigma)$	$O(n \log \Sigma / \log n)$	[HSS03]	
O(vn)	$O(n/\sqrt{v}) \ v \in [1,\sqrt{n}]$	[KSB06]	
O(n)	$n+n/\log n+O(1)$	[NZC09]	
$O(n^2 \log n)$	cn + O(1) $c < 1$	[MF02, MP06]	
$O(n^2 \log n)$	$ \Sigma + O(1)$	[IT99]	
$O(n \log \Sigma)$	$ \Sigma + O(1)$	[NZ07]	
O(n)	$ \Sigma + O(1)$	[Nong13]	
O(n)	O(1)	This paper	

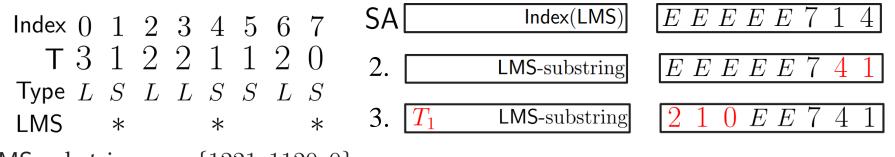
Table 1: Time and workspace of suffix sorting algorithms for integer alphabets Σ

- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

- Notations:
 - A suf(i) (T[i..n-1]) is *L-suffix* if suf(i)>suf(i+1)
 - Type of character T[i] is the same as suf(i)
 - LMS-suffix (leftmost S-suffix) if suf(i) is S-type and suf(i-1) is L-type
- Example: T[0..7]="31221120"

• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)



LMS-substrings are $\{1221, 1120, 0\}$.

• Framework:

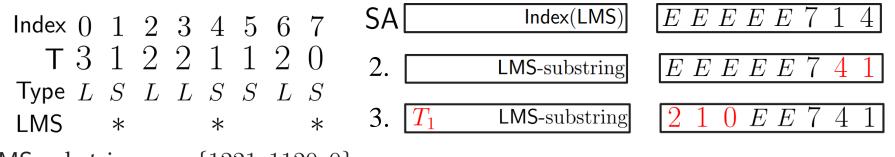
- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)

Index 0 1 2 3 4 5 6 7 T 3 1 2 2 1 1 2 0 Type L S L L S S L SLMS * * * LMS-substrings are $\{1221, 1120, 0\}$

7	3. T_1 LMS-substr	ring	$2 \ 1 \ 0 \ E \ E$	$7 \ 4 \ 1$		
) ; <	Index LMS-Substring Rank (T ₁)	1 1221 2	4 1120 1	7 0 0		
,0}.	}. T_1 ("210") shortens T("12211120") by using one character to replace a substring of T					

• Framework:

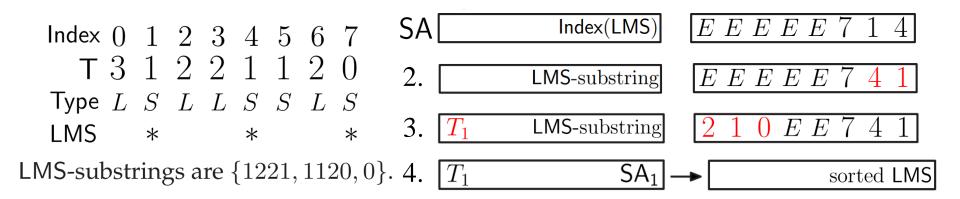
- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)



LMS-substrings are $\{1221, 1120, 0\}$.

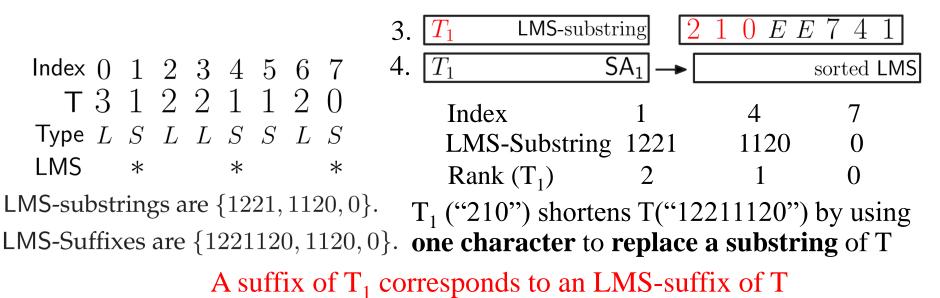
• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)



• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)

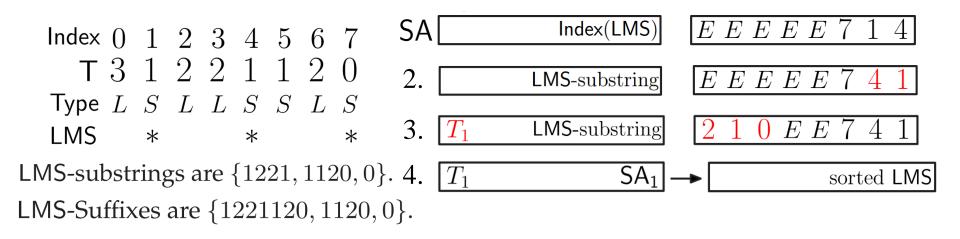


Zhize Li (Tsinghua)

Optimal In-Place Suffix Sorting

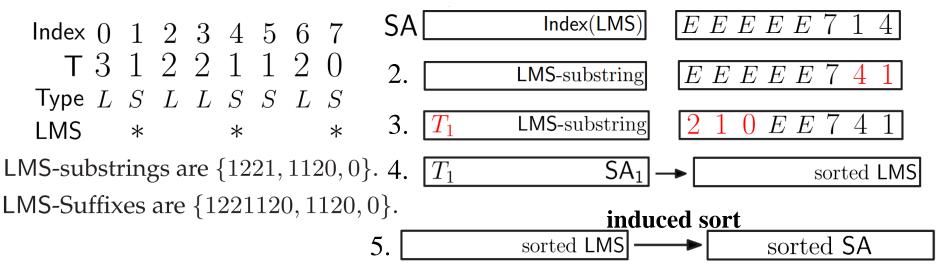
• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)



• Framework:

- 1. Sort all LMS-characters of T (counting sort)
- 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)
- 3. Construct the reduced subproblem T_1 from sorted LMS-substrings (simple)
- 4. Sort LMS-suffixes of T by solving T₁ recursively (simple)
- 5. Induced sort all suffixes from the sorted LMS-suffixes (technical part)



• Induced sorting all suffixes from the sorted LMS-suffixes

- 1. First induced sort all L-suffixes from the sorted LMS-suffixes
 - Divide into two stages

$$SA \xrightarrow{L} S \xrightarrow{S} Stage 1 \xrightarrow{L} S$$

$$c_p = cn/\log n \xrightarrow{S} n_L - c_p c_p$$

Stage 1: Construct *pointer data structure* \mathcal{P} & combine *interior counter trick* to induced sort the first $n_L - c_p$ L-suffixes.

• Induced sorting all suffixes from the sorted LMS-suffixes

- 1. First induced sort all L-suffixes from the sorted LMS-suffixes
 - Divide into two stages

$$SA \xrightarrow{L} S \xrightarrow{S} Stage 1 \xrightarrow{L} S \xrightarrow{S} Stage 2 \xrightarrow{L} S \xrightarrow{S} c_p = cn/\log n \xrightarrow{n_L - c_p c_p} c_p \xrightarrow{S} n_L \xrightarrow{S} n_L$$

Stage 1: Construct *pointer data structure* \mathcal{P} & combine *interior counter trick* to induced sort the first $n_L - c_p$ L-suffixes.

Stage 2: Use binary search to extend the interior counter trick to induced sort the last c_p L-suffixes without \mathcal{P} .

Key: without \mathcal{P} , Stage 2 also maintains **linear time** since c_p is small enough (i.e., $c_p \log n = cn$).

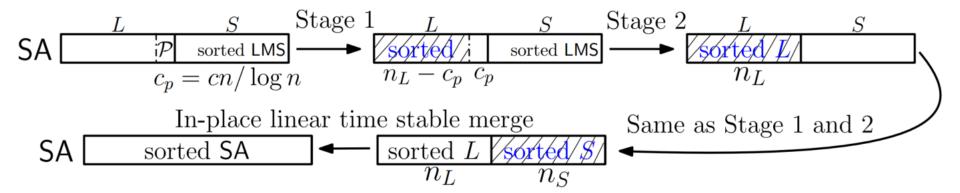
• Induced sorting all suffixes from the sorted LMS-suffixes

- 1. First induced sort all L-suffixes from the sorted LMS-suffixes
 - Divide into two stages
- 2. Then induced sort **all S-suffixes** from the sorted L-suffixes (same as 1)

$$SA \xrightarrow{L}{\mathcal{P} \text{ sorted LMS}} \xrightarrow{\text{Stage 1}}_{n_L} \xrightarrow{L}{\mathcal{S} \text{ orted LMS}} \xrightarrow{\text{Stage 2}}_{n_L} \xrightarrow{L}{\mathcal{S} \text{ orted LMS}} \xrightarrow{\text{Stage 2}}_{n_L} \xrightarrow{L}{\mathcal{S} \text{ orted LMS}} \xrightarrow{\text{Stage 2}}_{n_L} \xrightarrow{L}{\mathcal{S} \text{ orted LMS}} \xrightarrow{n_L}$$

• Induced sorting all suffixes from the sorted LMS-suffixes

- 1. First induced sort all L-suffixes from the sorted LMS-suffixes
 - Divide into two stages
- 2. Then induced sort **all S-suffixes** from the sorted L-suffixes (same as 1)
- 3. Merge the sorted L- and S-suffixes to get the final suffix array



- Problem Definition
- Related Work
- Our Results
- Our Algorithm
- Conclusion

Conclusion

• We propose the *first* in-place suffix sorting algorithm which is *optimal both in time and space*.

Time: O(n) Space: O(1) workspace (in-place)

- Our algorithm solves the open problem posed by Franceschini and Muthukrishnan in ICALP 2007.
 - Desired time and space in their open problem: Time: o(nlogn) Space: O(1) workspace (in-place)

Thanks!

Zhize Li (IIIS, Tsinghua University) https://zhizeli.github.io/