
Zhize Li, Jian Li, Hongwei Huo

Optimal In-Place Suffix Sorting

IIIS, Tsinghua University

https://zhizeli.github.io/

October 10th, SPIRE 2018

• Problem Definition

• Related Work

• Our Results

• Our Algorithm

• Conclusion

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 2/26

Problem Definition

Suffix array is a fundamental data structure introduced by Manber
and Myers as a space-saving alternative to suffix trees in SODA’90.

𝛴

• Definition:
• Given a string T[0..n-1], each T[i] belongs to an integer alphabet

• Suffix: suf(i) is a substring T[i…n-1] (from index i to the end of T)

• Example:
• If T=“130” (integer alphabet), then all suffixes are {130, 30, 0}

• Suffix array SA contains the indices of all sorted suffixes

• suf(2)<suf(0)<suf(1), i.e. 0<130<30 (in lexicographical order)

• SA=[2,0,1] suf(SA[i]) < suf(SA[j]) for all i<j

• Problem:

Construct the suffix array SA for a given string T[0…n-1]

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 3/26

• Problem Definition

• Related Work

• Our Results

• Our Algorithm

• Conclusion

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 4/26

• Manber and Myers [MM90] constructed the SA using a doubling
technique.
• beginning characters -> first two characters-> first four characters….

Time: O(nlogn) Space: O(n) workspace

Workspace denotes the total space used by an algorithm except
for the input string T and the suffix array SA.

Related Work

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 5/26

• Manber and Myers [MM90] constructed the SA using a doubling
technique.
• beginning characters -> first two characters-> first four characters….

Time: O(nlogn) Space: O(n) workspace

• In 2003, the first linear time algorithms were obtained by
[KSPP03,KS03,KA03] using the divide-and-conquer technique.

Time: T(n)=T(cn)+O(n)=O(n) Space: O(n) workspace

Related Work

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 6/26

• Manber and Myers [MM90] constructed the SA using a doubling
technique.
• beginning characters -> first two characters-> first four characters….

Time: O(nlogn) Space: O(n) workspace

• In 2003, the first linear time algorithms were obtained by
[KSPP03,KS03,KA03] using the divide-and-conquer technique.

Time: T(n)=T(cn)+O(n)=O(n) Space: O(n) workspace

•Bottleneck: space

Related Work

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 7/26

• Previous best result [Nong, TOIS’13]:

• Open problem [Franceschini and Muthukrishnan, ICALP’07]:

• Design in-place (O(1) workspace) and o(nlogn) time algorithms for
integer alphabets with 𝛴 ≤ 𝑛.𝛴

Time: O(n) Space: 𝛴 + O(1) workspace

Theorem. Our optimal in-place algorithm takes O(n) time to compute
the suffix array even if the string T is read-only and ሻ|𝛴| = 𝑂(𝑛 .

Related Work

• Ultimate goal: design in-place algorithms, and maintain the
optimal O(n) time complexity.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 8/26

• Problem Definition

• Related Work

• Our Results

• Our Algorithm

• Conclusion

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 9/26

Theorem. Our optimal in-place algorithm takes O(n) time to compute
the suffix array even if the string T is read-only and ሻ|𝛴| = 𝑂(𝑛 .

Our Results

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 10/26

• Problem Definition

• Related Work

• Our Results

• Our Algorithm

• Conclusion

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 11/26

Our Algorithm

• Notations:

• A suf(i) (T[i..n-1]) is L-suffix if suf(i)>suf(i+1)
• Type of character T[i] is the same as suf(i)

• LMS-suffix (leftmost S-suffix) if suf(i) is S-type and suf(i-1) is L-type

• Example: T[0..7]=“31221120”

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 12/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• Framework:

2.

3.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 13/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• Framework:

Index 1 4 7
LMS-Substring 1221 1120 0

Rank (T1) 2 1 0

T1 (“210”) shortens T(“12211120”) by using
one character to replace a substring of T

3.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 14/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• Framework:

2.

3.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 15/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• 4. Sort LMS-suffixes of T by solving T1 recursively (simple)

• Framework:

2.

3.

4.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 16/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• 4. Sort LMS-suffixes of T by solving T1 recursively (simple)

• Framework:

T1 (“210”) shortens T(“12211120”) by using
one character to replace a substring of T

3.

4.

A suffix of T1 corresponds to an LMS-suffix of T

Index 1 4 7
LMS-Substring 1221 1120 0

Rank (T1) 2 1 0

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 17/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• 4. Sort LMS-suffixes of T by solving T1 recursively (simple)

• Framework:

2.

3.

4.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 18/26

Our Algorithm

• 1. Sort all LMS-characters of T (counting sort)

• 2. Induced sort all LMS-substrings from sorted LMS-characters (same as 5)

• 3. Construct the reduced subproblem T1 from sorted LMS-substrings (simple)

• 4. Sort LMS-suffixes of T by solving T1 recursively (simple)

• 5. Induced sort all suffixes from the sorted LMS-suffixes (technical part)

• Framework:

induced sort

2.

3.

4.

5.

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 19/26

• Induced sorting all suffixes from the sorted LMS-suffixes

• 1. First induced sort all L-suffixes from the sorted LMS-suffixes

• Divide into two stages

Our Algorithm

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 20/26

• Induced sorting all suffixes from the sorted LMS-suffixes

• 1. First induced sort all L-suffixes from the sorted LMS-suffixes

• Divide into two stages

Our Algorithm

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 21/26

• Induced sorting all suffixes from the sorted LMS-suffixes

• 1. First induced sort all L-suffixes from the sorted LMS-suffixes

• Divide into two stages

• 2. Then induced sort all S-suffixes from the sorted L-suffixes (same as 1)

Our Algorithm

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 22/26

• Induced sorting all suffixes from the sorted LMS-suffixes

• 1. First induced sort all L-suffixes from the sorted LMS-suffixes

• Divide into two stages

• 2. Then induced sort all S-suffixes from the sorted L-suffixes (same as 1)

Our Algorithm

• 3. Merge the sorted L- and S-suffixes to get the final suffix array

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 23/26

• Problem Definition

• Related Work

• Our Results

• Our Algorithm

• Conclusion

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 24/26

Conclusion

• We propose the first in-place suffix sorting algorithm which is
optimal both in time and space.

Time: O(n) Space: O(1) workspace (in-place)

• Our algorithm solves the open problem posed by Franceschini
and Muthukrishnan in ICALP 2007.

• Desired time and space in their open problem:

Time: o(nlogn) Space: O(1) workspace (in-place)

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 25/26

Thanks!
Zhize Li (IIIS,Tsinghua University)

https://zhizeli.github.io/

Optimal In-Place Suffix SortingZhize Li (Tsinghua) 26/26

