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Abstract

This paper discusses how to efficiently choose from n unknown distributions the k
ones whose means are the greatest by a certain metric, up to a small relative error.
We study the topic under two standard settings—multi-armed bandits and hidden
bipartite graphs—which differ in the nature of the input distributions. In the for-
mer setting, each distribution can be sampled (in the i.i.d. manner) an arbitrary
number of times, whereas in the latter, each distribution is defined on a population
of a finite size m (and hence, is fully revealed after m samples). For both set-
tings, we prove lower bounds on the total number of samples needed, and propose
optimal algorithms whose sample complexities match those lower bounds.

1 Introduction
This paper studies a class of problems that share a common high-level objective: from a number n
of probabilistic distributions, find the k ones whose means are the greatest by a certain metric.

Crowdsourcing. A crowdsourcing algorithm (see recent works [1, 13] and the references therein)
summons a certain number, say k, of individuals, called workers, to collaboratively accomplish
a complex task. Typically, the algorithm breaks the task into a potentially very large number of
micro-tasks, each of which makes a binary decision (yes or no) by taking the majority vote from the
participating workers. Each worker is given an (often monetary) reward for every micro-task that
s/he participates in. It is therefore crucial to identify the most reliable workers that have the highest
rates of making correct decisions. Because of this, a crowdsourcing algorithm should ideally be
preceded by an exploration phase, which selects the best k workers from n candidates by a series of
“control questions”. Every control-question must be paid for in the same way as a micro-task. The
challenge is to find the best workers with the least amount of money.

Frequent Pattern Discovery. Let B and W be two relations. Given a join predicate Q(b, w), the
joining power of a tuple b ∈ B equals the number of tuples w ∈ W such that b and w satisfy Q. A
top-k semi-join [14, 17] returns the k tuples in B with the greatest joining power. This type of semi-
joins is notoriously difficult to process when the evaluation of Q is complicated, and thus unfriendly
to tailored-made optimization. A well-known example from graph databases is the discovery of
frequent patterns [14], where B is a set of graph patterns, W a set of data graphs, and Q(b, w)
decides if a pattern b is a subgraph of a data graph w. In this case, top-k semi-join essentially returns
the set of k graph patterns most frequently found in the data graphs. Given a black box for resolving
subgraph isomorphism Q(b, w), the challenge is to minimize the number of calls to the black box.
We refer to the reader to [14, 15] for more examples of difficult top-k semi-joins of this sort.

1.1 Problem Formulation

The paper studies four problems that capture the essence of the above applications.

Multi-Armed Bandit. We consider a standard setting of stochastic multi-armed bandit selection.
Specifically, there is a bandit with a setB of n arms, where the i-th arm is associated with a Bernoulli
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distribution with an unknown mean θi ∈ (0, 1]. In each round, we choose an arm, pull it, and then
collect a reward, which is an i.i.d. sample from the arm’s reward distribution.

Given a subset V ⊆ B of arms, we denote by ai(V ) the arm with the i-th largest mean in V , and
by θi(V ) the mean of ai(V ). Define θavg(V ) = 1

k

∑k
i=1 θi(V ), namely, the average of the means of

the top-k arms in V .

Our first two problems aim to identify k arms whose means are the greatest either individually or
aggregatively:
Problem 1 [Top-k Arm Selection (k-AS)] Given parameters ε ∈

(
0, 1

4

)
, δ ∈

(
0, 1

48

)
, and k ≤

n/2, we want to select a k-sized subset V of B such that, with probability at least 1− δ, it holds that

θi(V ) ≥ (1− ε)θi(B), ∀i ≤ k.
We further study a variation of k-AS where we change the multiplicative guarantee θi(V ) ≥ (1 −
ε)θi(B) to an additive guarantee θi(V ) ≥ θi(B) − ε′. We refer to the modified problem as Top-
kadd Arm Selection(kadd-AS). Due to the space constraint, we present all the details of kadd-AS in
Appendix C.
Problem 2 [Top-kavg Arm Selection (kavg-AS)] Given the same parameters as in k-AS, we want
to select a k-sized subset V of B such that, with probability at least 1− δ, it holds that

θavg(V ) ≥ (1− ε)θavg(B).

For both problems, the cost of an algorithm is the total number of arms pulled, or equivalently, the
total number of samples drawn from the arms’ distributions. For this reason, we refer to the cost
as the algorithm’s sample complexity. It is easy to see that k-AS is more stringent than kavg-AS;
hence, a feasible solution to the former is also a feasible solution to the latter, but not the vice versa.

Hidden Bipartite Graph. The second main focus of the paper is the exploration of hidden bipartite
graphs. Let G = (B,W,E) be a bipartite graph, where the nodes in B are colored black, and those
in W colored white. Set n = |B| and m = |W |. The edge set E is hidden in the sense that an
algorithm does not see any edge at the beginning. To find out whether an edge exists between a
black vertex b and a white vertex w, the algorithm must perform a probe operation. The cost of the
algorithm equals the number of such operations performed.

If an edge exists between b and w, we say that there is a solid edge between them; otherwise,
we say that they have an empty edge. Let deg(b) be the degree of a black vertex b, namely, the
number of solid edges of b. Given a subset of black vertices V ⊆ B, we denote by bi(V ) the
black vertex with i-th largest degree in V , and by degi(V ) the degree of bi(V ). Furthermore, define
degavg(V ) = 1

k

∑k
i=1 degi(V ).

We now state the other two problems studied in this work, which aim to identify k black vertices
whose degrees are the greatest either individually or aggregatively:

Problem 3 [k-Most Connected Vertex [14] (k-MCV)] Given parameters ε ∈
(
0, 1

4

)
, δ ∈

(
0, 1

48

)
,

and k ≤ n/2, we want to select a k-sized subset V of B such that, with probability at least 1− δ, it
holds that

degi(V ) ≥ (1− ε) degi(B), ∀i ≤ k.
Problem 4 [kavg-Most Connected Vertex (kavg-MCV)] Given the same parameters as in k-MCV,
we want to select a k-sized subset V of B such that, with probability at least 1− δ, it holds that

degavg(V ) ≥ (1− ε) degavg(B).

A feasible solution to k-MCV is also feasible for kavg-MCV, but not the vice versa. We will refer to
the cost of an algorithm also as its sample complexity, by regarding a probe operation as “sampling”
the edge probed. For any deterministic algorithm, the adversary can force the algorithm to always
probe Ω(mn) edges. Hence, we only consider randomized algorithms.

k-MCV can be reduced to k-AS. Given a hidden bipartite graph (B,W,E), we can treat every
black vertex b ∈ B as an “arm” associated with a Bernoulli reward distribution: the reward is 1 with
probability deg(b)/m (recallm = |W |), and 0 with probability 1−deg(b)/m. Any algorithmA for
k-AS can be deployed to solve k-MCV as follows. WheneverA samples from arm b, we randomly
choose a white vertex w ∈ W , and probe the edge between b and w. A reward of 1 is returned to A
if and only if the edge exists.
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k-AS and k-MCV differ, however, in the size of the population that a reward distribution is defined
on. For k-AS, the reward of each arm is sampled from a population of an indefinite size, which can
even be infinite. Consequently, k-AS nicely models situations such as the crowdsourcing application
mentioned earlier.

For k-MCV, the reward distribution of each “arm” (i.e., a black vertex b) is defined on a population
of size m = |W | (i.e., the edges of b). This has three implications. First, k-MCV is a better
modeling of applications like top-k semi-join (where an edge exists between b ∈ B and w ∈ W
if and only if Q(b, w) is true). Second, the problem admits an obvious algorithm with cost O(nm)
(recall n = |B|): simply probe all the hidden edges. Third, an algorithm never needs to probe the
same edge between b and w twice—once probed, whether the edge is solid or empty is perpetually
revealed. We refer to the last implication as the history-awareness property.

The above discussion on k-AS and k-MCV also applies to kavg-AS and kavg-MCV. For each of
above problems, we refer to an algorithm which achieves the precision and failure requirements
prescribed by ε and δ as an (ε, δ)-approximate algorithm.

1.2 Previous Results

Problem 1. Sheng et al. [14] presented an algorithm1 that solves k-AS with expected cost
O( nε2

1
θk(B) log n

δ ). No lower bound is known on the sample complexity of k-AS. The closest work
is due to Kalyanakrishnan et al. [11]. They considered the EXPLORE-k problem, where the goal
is to return a set V of k arms such that, with probability at least 1 − δ, the mean of each arm in
V is at least θk(B) − ε′. They showed an algorithm with sample complexity Θ( n

ε′2 log k
δ ) in ex-

pectation and establish a matching lower bound. Note that EXPLORE-k ensures an absolute-error
guarantee, which is weaker than the individually relative-error guarantee of k-AS. Therefore, the
same EXPLORE-k lower bound also applies to k-AS.

The readers may be tempted to set ε′ = ε · θk(B) to derive a “lower bound” of Ω( nε2
1

(θk(B))2 log k
δ )

for k-AS. This, however, is clearly wrong because when θk(B) = o(1) (a typical case in practice)
this “lower bound” may be even higher than the upper bound of [14] mentioned earlier. The cause
of the error lies in that the hard instance constructed in [11] requires θk(B) = Ω(1).

Problem 2. The O( nε2
1

θk(B) log n
δ ) upper bound of [14] on k-AS carries over to kavg-AS (which, as

mentioned before, can be solved by any k-AS algorithm). Zhou et al. [16] considered an OPTMAI
problem whose goal is to find a k-sized subset V such that θavg(V ) − θavg(B) ≤ ε′ holds with
probability at least 1−δ. Note, once again, that this is an absolute-error guarantee, as opposed to the
relative-error guarantee of kavg-AS. For OPTMAI, Zhou et al. presented an algorithm with sample
complexity O( n

ε′2 (1 + log(1/δ)
k )) in expectation. Observe that if θavg(B) is available magically in

advance, we can immediately apply the OPTMAI algorithm of [16] to settle kavg-AS by setting
ε′ = ε · θavg(B). The expected cost of the algorithm becomes O( nε2

1
(θavg(B))2 (1 + log(1/δ)

k )) (which
is suboptimal. See the table).

No lower bound is known on the sample complexity of kavg-AS. For OPTMAI, Zhou et al. [16]
proved a lower bound of Ω( n

ε′2 (1 + log(1/δ)
k )), which directly applies to kavg-AS due to its stronger

quality guarantee.

Problems 3 and 4. Both problems can be trivially solved with cost O(nm). Furthermore, as
explained in Section 1.1, k-MCV and kavg-MCV can be reduced to k-AS and kavg-AS respectively.
Indeed, the best existing k-AS and kavg-AS algorithms (surveyed in the above) serve as the state of
the art for k-MCV and kavg-MCV, respectively.

Prior to this work, no lower bound results were known for k-MCV and kavg-MCV. Note that none
of the lower bounds for k-AS (or kavg-AS) is applicable to k-MCV (or kavg-MCV, resp.), because
there is no reduction from the former problem to the latter.

1.3 Our Results
We obtain tight upper and lower bounds for all of the problems defined in Section 1.1. Our main re-
sults are summarized in Table 1 (all bounds are in expectation). Next, we explain several highlights,
and provide an overview into our techniques.

1The algorithm was designed for k-MCV, but it can be adapted to k-AS as well.
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Table 1: Comparison of our and previous results (all bounds are in expectation)
problem sample complexity source

k-AS

upper
bound

O
(
n
ε2

1
θk(B) log n

δ

)
[14]

O
(
n
ε2

1
θk(B) log k

δ

)
new

lower
bound

Ω
(
n
ε2 log k

δ

)
[11]

Ω
(
n
ε2

1
θk(B) log k

δ

)
new

O( nε2
1

θk(B) log n
δ ) [14]

upper
bound O

(
n
ε2

1
(θavg(B))2

(
1 + log(1/δ)

k

))
[16]

kavg-AS O
(
n
ε2

1
θavg(B)

(
1 + log(1/δ)

k

))
new

lower
bound

Ω
(
n
ε2

(
1 + log(1/δ)

k

))
[16]

Ω
(
n
ε2

1
θavg(B)

(
1 + log(1/δ)

k

))
new

k-MCV

upper
bound

O
(

min
{
n
ε2

m
degk(B) log n

δ , nm
})

[14]

O
(

min
{
n
ε2

m
degk(B) log k

δ , nm
})

new

lower
bound

{
Ω
(
n
ε2

m
degk(B) log k

δ

)
if degk(B) ≥ Ω( 1

ε2 log n
δ )

Ω(nm) if degk(B) < O( 1
ε )

new

O
(

min
{
n
ε2

m
degk(B) log n

δ , nm
})

[14]
upper
bound O

(
min

{
n
ε2

m2

(degavg(B))2

(
1 + log(1/δ)

k

)
, nm

})
[16]

kavg-MCV O
(

min
{
n
ε2

m
degavg(B)

(
1 + log(1/δ)

k

)
, nm

})
new

lower
bound


Ω
(
n
ε2

m
degavg(B)

(
1 + log(1/δ)

k

))
if degavg(B) ≥ Ω( 1

ε2 log n
δ )

Ω(nm) if degavg(B) < O( 1
ε )

new

k-AS. Our algorithm improves the log n factor of [14] to log k (in practice k � n), thereby achiev-
ing the optimal sample complexity (Theorem 1).

Our analysis for k-AS is inspired by [8, 10, 11] (in particular the median elimination technique in
[8]). However, the details are very different and more involved than the previous ones (the applica-
tion of median elimination of [8] was in a much simpler context where the analysis was considerably
easier). On the lower bound side, our argument is similar to that of [11], but we need to get rid of
the θk(B) = Ω(1) assumption (as explained in Section 1.2), which requires several changes in the
analysis (Theorem 2).

kavg-AS. Our algorithm improves both existing solutions in [14, 16] significantly, noticing that both
θk(B) and (θavg(B))2 are never larger, but can be far smaller, than θavg(B). This improvement re-
sults from an enhanced version of median elimination, and once again, requires a non-trivial analysis
specific to our context (Theorem 4). Our lower bound is established with a novel reduction from the
1-AS problem (Theorem 5). It is worth nothing that the reduction can be used to simplify the proof
of the lower bound in [16, Theorem 5.5] .

k-MCV and kavg-MCV. The stated upper bounds for k-MCV and kavg-MCV in Table 1 can be
obtained directly from our k-AS and kavg-AS algorithms. In contrast, all the lower-bound arguments
for k-AS and kavg-AS—which crucially rely on the samples being i.i.d.—break down for the two
MCV problems, due to the history-awareness property explained in Section 1.1.

For k-MCV, we remedy the issue by (i) (when degk(B) is large) a reduction from k-AS, and (ii)
(when degk(B) is small) a reduction from a sampling lower bound for distinguishing two extremely
similar distributions (Theorem 3). Analogous ideas are deployed for kavg-MCV (Theorem 6). Note
that for a small range of degk(B) (i.e., Ω( 1

ε ) < degk(B) < O( 1
ε2 log n

δ )), we do not have the
optimal lower bounds yet for k-MCV and kavg-MCV. Closing the gap is left as an interesting open
problem.
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Algorithm 1: ME-AS
1 input: B, ε, δ, k
2 for µ = 1/2, 1/4, . . . do
3 S = ME(B, ε, δ, µ, k);
4 {(ai, θ̂US (ai)) | 1 ≤ i ≤ k} = US(S, ε, δ, (1− ε/2)µ, k);
5 if θ̂US (ak) ≥ 2µ then
6 return {a1, . . . , ak};

Algorithm 2: Median Elimination (ME)
1 input: B, ε, δ, µ, k
2 S1 = B, ε1 = ε/16, δ1 = δ/8, µ1 = µ, and ` = 1;
3 while |S`| > 4k do
4 sample every arm a ∈ S` for Q` = (12/ε2`)(1/µ`) log(6k/δ`) times;
5 for each arm a ∈ S` do
6 its empirical value θ̂(a) = the average of the Q` samples from a;
7 a1, . . . , a|S`| = the arms sorted in non-increasing order of their empirical values;
8 S`+1 = {a1, . . . , a|S`|/2};
9 ε`+1 = 3ε`/4, δ`+1 = δ`/2, µ`+1 = (1− ε`)µ`, and ` = `+ 1;

10 return S`;

Algorithm 3: Uniform Sampling (US)
1 input: S, ε, δ, µs, k
2 sample every arm a ∈ S for Q = (96/ε2)(1/µs) log(4|S|/δ) times;
3 for each arm a ∈ S do
4 its US-empirical value θ̂US (a) = the average of the Q samples from a;
5 a1, . . . , a|S| = the arms sorted in non-increasing order of their US-empirical values;
6 return {(a1, θ̂

US (a1)), . . . , (ak, θ̂
US (ak))}

2 Top-k Arm Selection
In this section, we describe a new algorithm for the k-AS problem. We present the detailed analysis
in Appendix B.

Our k-AS algorithm consists of three components: ME-AS, Median Elimination (ME), and Uniform
Sampling (US), as shown in Algorithms 1, 2, and 3, respectively.

Given parameters B, ε, δ, k (as in Problem 1), ME-AS takes a “guess” µ (Line 2) on the value of
θk(B), and then applies ME (Line 3) to prune B down to a set S of at most 4k arms. Then, at Line
4, US is invoked to process S. At Line 5, (as will be clear shortly) the value of θ̂US (ak) is what
ME-AS thinks should be the value of θk(B); thus, the algorithm performs a quality check to see
whether θ̂US (ak) is larger than but close to µ. If the check fails, ME-AS halves its guess µ (Line 2),
and repeats the above steps; otherwise, the output of US from Line 4 is returned as the final result.

ME runs in rounds. Round ` (= 1, 2, ...) is controlled by parameters S`, ε`, δ`, and µ` (their values
for Round 1 are given at Line 1). In general, S` is the set of arms from which we still want to sample.
For each arm a ∈ S`, ME takes Q` (Line 4) samples from a, and calculates its empirical value θ̂(a)
(Lines 5 and 6). ME drops (at Lines 7 and 8) half of the arms in S` with the smallest empirical
values, and then (at Line 9) sets the parameters of the next round. ME terminates by returning S` as
soon as |S`| is at most 4k (Lines 3 and 10).

US simply takes Q samples from each arm a ∈ S (Line 2), and calculates its US-empirical value
θ̂US (a) (Lines 3 and 4). Finally, US returns the k arms in S with the largest US-empirical values
(Lines 5 and 6).

Remark. If we ignore Line 3 of Algorithm 1 and simply set S = B, then ME-AS degenerates into
the algorithm in [14].
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Theorem 1 ME-AS solves the k-AS problem with expected cost O
(
n
ε2

1
θk(B) log k

δ

)
.

We extends the proof in [11] and establish the lower bound for k-AS as shown in Theorem 2.
Theorem 2 For any ε ∈

(
0, 1

4

)
and δ ∈

(
0, 1

48

)
, given any algorithm, there is an instance of the

k-AS problem on which the algorithm must entail Ω( nε2
1

θk(B) log k
δ ) cost in expectation.

3 k-MOST CONNECTED VERTEX
This section is devoted to the k-MCV problem (Problem 3). We will focus on lower bounds because
our k-AS algorithm in the previous section also settles k-MCV with the cost claimed in Table 1 by
applying the reduction described in Section 1.1. We establish matching lower bounds below:
Theorem 3 For any ε ∈

(
0, 1

12

)
and δ ∈

(
0, 1

48

)
, the following statements are true about any

k-MCV algorithm:

• when degk(B) ≥ Ω
(

1
ε2 log n

δ

)
, there is an instance on which the algorithm must probe

Ω( nε2
m

degk(B) log k
δ ) edges in expectation.

• when degk(B) < O( 1
ε ), there is an instance on which the algorithm must probe Ω(nm)

edges in expectation.
For large degk(B) in Theorem 3, we utilize an instance for k-AS to construct a random hidden
bipartite graph and fed it to any algorithm solves k-MCV. By doing this, we reduce k-AS to k-
MCV and thus, establish our first lower bound.

For small degk(B), we define the single-vertex problem where the goal is to distinguish two ex-
tremely distributions. We prove the lower bound of single-vertex problem and reduce it to k-MCV.
Thus, we establish our second lower bound. The details are presented in Appendix D.

4 Top-kavg Arm Selection
Our kavg-AS algorithm QE-AS is similar to ME-AS described in Section 2, except that the parame-
ters are adjusted appropriately, as shown in Algorithm 4, 5, 6 respectively. We present the details in
Appendix E.

Theorem 4 QE-AS solves the kavg-AS problem with expected cost O
(
n
ε2

1
θavg(B)

(
1 + log(1/δ)

k

))
.

We establish the lower bound for kavg-AS as shown in Theorem 5.

Theorem 5 For any ε ∈
(
0, 1

12

)
and δ ∈

(
0, 1

48

)
, given any (ε, δ)-approximate algo-

rithm, there is an instance of the kavg-AS problem on which the algorithm must entail

Ω
(
n
ε2

1
θavg(B)

(
1 + log(1/δ)

k

))
cost in expectation.

We show that the lower bound of kavg-AS is the maximum of Ω
(
n
ε2

1
θavg(B)

log(1/δ)
k

)
and

Ω
(
n
ε2

1
θavg(B)

)
. Our proof of the first lower bound is based on a novel reduction from 1-AS. We

stress that our reduction can be used to simplify the proof of the lower bound in [16, Theorem 5.5].

5 kavg-MOST CONNECTED VERTEX
Our kavg-AS algorithm, combined with the reduction described in Section 1.1, already settles kavg-
MCV with the sample complexity given in Table 1. We establish the following lower bound and
prove it in Appendix F.
Theorem 6 For any ε ∈

(
0, 1

12

)
and δ ∈

(
0, 1

48

)
, the following statements are true about any

kavg-MCV algorithm:

• when degavg(B) ≥ Ω
(

1
ε2 log n

δ

)
, there is an instance on which the algorithm must probe

Ω

(
n

ε2
m

degavg(B)

(
1 +

log(1/δ)

k

))
edges in expectation.

• when degk(B) < O( 1
ε ), there is an instance on which the algorithm must probe Ω(nm)

edges in expectation.
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Algorithm 4: QE-AS
1 input: B, ε, δ, k
2 for µ = 1/2, 1/4, . . . do
3 S = QE(B, ε, δ, µ, k);
4 {(ai | 1 ≤ i ≤ k), θ̂USavg } = US(S, ε, δ, (1− ε/2)µ, k);
5 if θ̂USavg ≥ 2µ then
6 return {a1, . . . , ak};

Algorithm 5: Quartile Elimination (QE)
1 input: B, ε, δ, µ, k
2 S1 = B, ε1 = ε/32, δ1 = δ/8, µ1 = µ, and ` = 1;
3 while |S`| > 4k do
4 sample every arm a ∈ S` for Q` = (48/ε2`)(1/µ`)

(
1 + log(2/δ`)

k

)
times;

5 for each arm a ∈ S` do
6 its empirical value θ̂(a) = the average of the Q` samples from a;
7 a1, . . . , a|S`| = the arms sorted in non-increasing order of their empirical values;
8 S`+1 = {a1, . . . , a3|S`|/4};
9 ε`+1 = 7ε`/8, δ`+1 = δ`/2, µ`+1 = (1− ε`)µ`, and ` = `+ 1;

10 return S`;

Algorithm 6: Uniform Sampling (US)
1 input: S, ε, δ, µs, k
2 sample every arm a ∈ S for Q = (120/ε2)(1/µs)

(
1 + log(4/δ)

k

)
times;

3 for each arm a ∈ S do
4 its US-empirical value θ̂US (a) = the average of the Q samples from a;
5 a1, . . . , a|S| = the arms sorted in non-increasing order of their US-empirical values;
6 return {(a1, . . . , ak), θ̂USavg = 1

k

∑k
i=1 θ̂

US (ai)}

6 Experiment Evaluation
Due to the space constraint, we show only the experiments that compare ME-AS and AMCV [14] for
k-MCV problem. Additional experiments can be found in Appendix G. We use two synthetic data
sets and one real world data set to evaluate the algorithms. Each dataset is represented as a bipartite
graph with n = m = 5000. For the synthetic data, the degrees of the black vertices follow a power
law distribution. For each black vertex b ∈ B, its degree equals d with probability c(d+1)−τ where
τ is the parameter to be set and c is the normalizing factor. Furthermore, for each black vertex with
degree d, we connected it to d randomly selected white vertices. Thus, we build two bipartite graphs
by setting the proper parameters in order to control the average degrees of the black vertices to be
50 and 3000 respectively. For the real world data, we crawl 5000 active users from twitter with their
corresponding relationships. We construct a bipartite graph G = (B,W,E) where each of B and
W represents all the users and E represents the 2-hop relationships. We say two users b ∈ B and
w ∈W have a 2-hop relationship if they share at least one common friend.

As the theoretical analysis is rather pessimistic due to the extensive usage of the union bound, to
make a fair comparison, we adopt the same strategy as in [14], i.e., to divide the sample cost in
theory by a heuristic constant ξ. We use the same parameter ξ = 2000 for AMCV as in [14].
For ME-AS, we first take ξ = 107 for each round of the median elimination step and then we use
the previous sample cost dividing 250 as the samples of the uniform sampling step. Notice that it
does not conflict the theoretical sample complexity since the median elimination step dominates the
sample complexity of the algorithm.

We fix the parameters δ = 0.1, k = 20 and enumerate ε from 0.01 to 0.1. We then calculate
the actual failure probability by counting the successful runs in 100 repeats. Recall that due to
the heuristic nature, the algorithm may not achieve the theoretical guarantees prescribed by (ε, δ).
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Whenever this happens, we label the percentage of actual error εa it achieves according to the failure
probability δ. For example 2.9 means the algorithm actually achieves an error εa = 0.029 with
failure probability δ. The experiment result is shown in Fig 1.
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Figure 1: Performance comparison for k-MCV vs. ε

As we can see, ME-AS outperforms AMCV in both sample complexity and the actual error in all
data sets. We stress that in the worst case, it seems ME-AS only shows a difference when n � k.
However for the most of the real world data, the degrees of the vertices usually follow a power
law distribution or a Gaussian distribution. For such cases, our algorithm only needs to take a
few samples in each round of the elimination step and drops half of vertices with high confidence.
Therefore, the experimental result shows that the sample cost of ME-AS is much less than AMCV.

7 Related Work
Multi-armed bandit problems are classical decision problems with exploration-exploitation trade-
offs, and have been extensively studied for several decades (dating back to 1930s). In this line of
research, k-AS and kavg-AS fit into the pure exploration category, which has attracted significant
attentions in recent years due to its abundant applications such as online advertisement placemen-
t [6], channel allocation for mobile communications [2], crowdsourcing [16], etc. We mention some
closely related work below, and refer the interested readers to a recent survey [4].

Even-Dar et al. [8] proposed an optimal algorithm for selecting a single arm which approximates
the best arm with an additive error at most ε (a matching lower bound was established by Mannor et
al. [12]). Kalyanakrishnan et al. [10, 11] considered the EXPLORE-k problem which we mentioned
in Section 1.2. They provided an algorithm with the sample complexity O( nε2 log k

δ ). Similarly,
Zhou et al. [16] studied the OPTMAI problem which, again as mentioned in Section 1.2, is the
absolute-error version of kavg-AS.

Audibert et al. [2] and Bubeck et al. [4] investigated the fixed budget setting where, given a fixed
number of samples, we want to minimize the so-called misidentification probability (informally, the
probability that the solution is not optimal). Buckeck et al. [5] also showed the links between the
simple regret (the gap between the arm we obtain and the best arm) and the cumulative regret (the
gap between the reward we obtained and the expected reward of the best arm). Gabillon et al. [9]
provide a unified approach UGapE for EXPLORE-k in both the fixed budget and the fixed confidence
settings. They derived the algorithms based on “lower and upper confidence bound” (LUCB) where
the time complexity depends on the gap between θk(B) and the other arms . Note that each time
LUCB samples the two arms that are most difficult to distinguish. Since our problem ensures an
individually guarantee, it is unclear whether only sampling the most difficult-to-distinguish arms
would be enough. We leave it as an intriguing direction for future work. Chen et al. [6] studied how
to select the best arms under various combinatorial constraints.
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Research Program of China grants 2015CB358700, 2011CBA00300, 2011CBA00301, and the Na-
tional NSFC grants 61202009, 61033001, 61361136003. Yufei Tao was supported in part by projects
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Organization
The appendix is organized as follows. We first review several useful forms of Chernoff bounds
in Appendix A. In Appendix B, we analyze our algorithm for k-AS and the corresponding lower
bound (Theorem 1 and 2). We provide the algorithm and the analysis for kadd-AS in Section C. In
Appendix D, we provide the deferred proof of our lower bound for k-MCV. Next, we provide the
deferred analysis of algorithm and the proof of the lower bound for kavg-AS (Theorem 4 and 5) in
Appendix E. In Appendix F, we prove our lower bound for kavg-MCV (Theorem 6). Finally, we
present the additional experiment evaluation in Appendix G.

A Chernoff Bounds
Proposition 1 ([7]) Let X1, . . . , Xn be independent random variables with Pr[Xi = 1] = pi, and
Pr[Xi = 0] = 1− pi. Define X =

∑n
i=1Xi. Clearly, E [X] =

∑n
i=1 pi. Then, for 0 < α < 1:

Pr[X ≥ (1 + α)E(X)] ≤ exp

(
−α2E(X)

3

)
. (1)

Pr[X ≤ (1− α)E(X)] ≤ exp

(
−α2E(X)

2

)
. (2)

For α ≥ 1:

Pr[X ≥ (1 + α)E(X)] ≤ exp

(
−(1 + α)E(X)

6

)
. (3)

For α > 0:

Pr[X ≥ (1 + α)E(X)] ≤
(

e

1 + α

)(1+α)E(X)

. (4)

Pr[X ≤ E(X)− α] ≤ exp

(
− α2

2E(X)

)
. (5)

Pr[|X − E(X)| ≥ α] ≤ 2 exp(−2α2n). (6)

Moreover, suppose E [Xi] < a for some real 0 ≤ a ≤ 1. For every t > 0, we have that

Pr[X/n > a+ t] < ((
a

a+ t
)a+t(

1− a
1− a− t

)1−a−t)n (7)

B Analysis of Top-k Arm Selection
In this section we analyze our k-AS algorithm. We first analyze the Median Elimination in Appendix
B.1. In Appendix B.2, we analyze the correctness and the sample complexity which prove Theorem
1. Then, we prove Theorem 2 in Appendix B.3.

B.1 Analysis of Median Elimination

This subsection serves as a proof for the following lemma, which says that if the guess µ (passed
in by ME-AS) is low enough, with a large probability, ME returns a good arm set S that preserves
approximately the k best arms in B:

Lemma 1 In Median Elimination, if µ ≤ θk (B), with probability at least 1 − δ
4 , ME returns an

arm set S satisfying θi(S) ≥
(
1− ε

2

)
θi(B) for all i ≤ k.

Let us first focus on the `-th round for a specific `. Recall that, in this round, ME calculates an
empirical value for each arm in S`. Henceforth, for any subset X ⊆ S`, define θ̂i(X) to be the
empirical value of ai(X).

Let E` be the event where the following holds for all i ≤ k:

θ̂i(S`) ∈
[
(1− ε`

2
)θi(S`), (1 +

ε`
2

)θi(S`)
]
.

Moreover, we say that an arm a ∈ S` is a bad arm if there exists an i ≤ k such that θ(a) <

(1− ε`)θi(S`) whereas θ̂(a) ≥ (1− ε`
2 )θi(S`).
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Lemma 2 In Round `, if E` occurs and the number of bad arms is no more than |S`|2 − k, then
θi(S`+1) ≥ (1− ε`)θi(S`) holds for all i ≤ k.

Proof : Under E`, no arm ai(S`) of any i ≤ k can be bad. To see this, suppose that there exists
j < i satisfying θi(S`) < (1− ε`)θj(S`) but θ̂i(S`) ≥ (1− ε`

2 )θj(S`). From E`, we have θ̂i(S`) ≤
(1 + ε`

2 )θi(S`) < (1 + ε`
2 )(1− ε`)θj(S`) < (1− ε`

2 )θj(S`), which is a contradiction.

When the number of bad arms is at most |S`|2 − k, at least k arms in S`+1 are not bad. Denote the
set of these arms as T . The rest of the proof will establish the claim:

θi(T ) ≥ (1− ε`)θi(S`), ∀i ≤ k

which is sufficient for the lemma to hold.

Suppose that the claim does not hold. Consider the smallest i ≤ k such that θi(T ) < (1− ε`) θi(S`).
Since ai(T ) is not bad, it holds that θ̂i(T ) < (1 − ε`

2 )θi(S`). Event E` suggests that θ̂i(S`) ≥
(1 − ε`

2 )θi(S`) > θ̂i(T ) which implies that ai(S`) has not been eliminated in this round. This,
together with the fact (shown earlier) that ai(S`) is not bad, indicates that ai(S`) must match an arm
ai′(T ) with i′ ≤ i− 1.

For any j < i, since θj(S`) ≥ θi(S`), we know that θi(T ) < (1 − ε`)θj(S`). A similar argument
shows that aj(S`) matches an arm aj′(T ) with j′ ≤ i− 1 and yet j′ 6= i′. This means that the first i
elements of S` form a one-to-one mapping to the first i− 1 elements of T , which is a contradiction.

�

Lemma 3 Under the condition µ ≤ θk (B), if for all j < `, Median Elimination ensures

θi(Sj+1) ≥ (1− εj) θi(Sj),∀i ≤ k (8)

then, with probability at least 1− δ`, θi(S`+1) ≥ (1− ε`)θi(S`) holds for all i ≤ k.

Proof : By Lemma 2, it suffices to show that with probability no less than 1− δ`, E` occurs and the
number of bad arms does not exceed |S`|2 − k.

Recall that in ME θk(S1) = θk(B) ≥ µ = µ1. Therefore, from (8), we know θk(Sl) ≥∏l−1
j=1 (1− εj) θk(S1) ≥ µl. Thus, by Chernoff bounds (1) and (2), we have that for any i ≤ k:

Pr
[
θ̂i(S`) ≤

(
1− ε`

2

)
θi(S`)

]
≤ exp

(
− (ε`/2)

2

2
Q`θi(S`)

)
≤ δ`

6k
,

and also

Pr
[
θ̂i(S`) ≥

(
1 +

ε`
2

)
θi(S`)

]
≤ δ`

6k
.

By the union bound, the failure probability of E` is at most δ`/3.

Next, consider the probability of an arm a being bad. For any i ≤ k which satisfies θ(a) <

(1− ε`) θi(S`), define α = θi(S`)
θ(a)

(
1− ε`

2

)
− 1. We distinguish two cases:

• Case 0 < α < 1. From Chernoff bound (1),

Pr
[
θ̂(a) ≥

(
1− ε`

2

)
θi(S`)

]
= Pr

[
θ̂(a) ≥ (1 + α) θ(a)

]
≤ exp

(
− (1− ε`/2)

3
Q`θi(S`) ·

α2

1 + α

)
.
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Recall that α = θi(S`)
θ(a)

(
1− ε`

2

)
− 1 ≥ 1

1−ε`

(
1− ε`

2

)
− 1 = ε`

2−2ε`
and α2

1+α increases
monotonically when α > 0. Therefore, we have

Pr
[
θ̂(a) ≥ (1 + α) θ(a)

]
≤ exp

(
− (1− ε`/2)

3
Q`θi(S`) ·

ε2`
(2− ε`) (2− 2ε`)

)
≤ exp

(
− (ε`/2)

2

3
Q`θi(S`)

)
≤ δ`

6k
.

• Case α ≥ 1. From Chernoff bound (3), we know

Pr
[
θ̂(a) ≥ (1 + α) θ(a)

]
≤ exp

(
−
(
1− ε`

2

)
6

Q`θi(S`)

)

≤ exp

(
− (ε`/2)

2

2
Q`θi(S`)

)
≤ δ`

6k
,

where the second last inequality holds due to the fact that (1− ε2 )
6 ≥ (ε/2)2

2 for any ε ∈(
0, 1

4

)
.

By the union bound, the probability of the arm a being bad is at most δ`6 .

Let Zi be a Boolean random variable that equals 1 if ai (S`) is a bad arm, and 0 otherwise. By
Markov’s inequality, we have that

Pr

|S`|∑
i=1

Zi >
|S`|
2
− k

 ≤
E
[∑|S`|

i=1 Zi

]
|S`|/2− k

≤ |S`|δ`/6
|S`|/2− k

≤ 2δ`
3
,

where the last inequality holds because |S`| > 4k for any `.

By the union bound, we conclude that with probability at least 1 − δ`, θi(S`+1) ≥ (1− ε`) θi(S`)
holds for all i ≤ k. �

We are now ready to prove Lemma 1. Suppose that ME terminates after L rounds. Lemma 3
suggests that, with probability at least

1−
L∑
i=1

δi = 1−
L∑
i=1

δ1
2i−1

≥ 1− 2δ1 = 1− δ/4,

θi(SL+1) ≥ θi(B)
∏L
j=1 (1− εj) holds for all i ≤ k. Utilizing the general fact that −2ε ≤

log (1− ε) ≤ −ε is true for any ε ∈
(
0, 1

4

)
, we have:

L∏
j=1

(1− εj) = exp

 L∑
j=1

log (1− εj)


≥ exp

−2ε1

∞∑
j=1

(
3

4

)j−1


= exp (−8ε1) = exp(−ε/2)

≥ 1− ε/2.
This completes the proof of Lemma 1.
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B.2 Correctness and Sample Complexity

Analysis of Uniform Sampling. As mentioned in Section 2, US was already applied in the algo-
rithm developed in by Sheng et al. [14]. We can re-use much of their analysis in our context. First,
they proved:

Lemma 4 ([14]) In Uniform Sampling, if µs ≤ θk(S), then with probability at least 1 − δ
4 , US

returns an arm set V which satisfies θi(V ) ≥
(
1− ε

2

)
θi(S) for any i ≤ k.

Proof : By the proof of Lemma 8 in [14] and adjusting constants appropriately. �

Next, we show that with a large probability ME-AS terminates at µ ∈ [ 1
8θk(B), θk(B)]. If this is

not what happens, one of the following two events must have happened:

(1) Premature: ME-AS terminates when µ > θk(B).
(2) Overdue: ME-AS does not terminate after invoking US with µ < 1

4θk(B).

We say that ME succeeds if the arm set S it returns satisfies θi(S) ≥ (1− ε
2 )θi(B) for all i ≥ k.

Lemma 5 Both of the following statements are true:

• (Due to [14]) The premature event happens with probability at most δ/4.

• If ME succeeds, the overdue event happens with probability at most δ/4.

Proof : The first statement has been proved in [14] (see Lemma 9 therein and adjusting constants
appropriately). For the overdue event, when µ < θk(B)/4, given that ME has succeeded, we have
µs = (1− ε

2 )µ < θk(S). Define θ̂US
k (S) to be the US-empirical value of ak(S). We have:

Pr
[
θ̂US
k (S) ≤ 2µ

]
≤ Pr

[
θ̂US
k (S) ≤ θk(B)/2

]
≤ Pr

[
θ̂US
k (S) ≤ θk(S)

2(1− ε/2)

]
≤ Pr

[
θ̂US
k (S) ≤ (1− ε/2)θk(S)

]
(by (2)) ≤ δ/4,

where the third inequality used the fact that 1
2(1−ε/2) ≤ (1− ε

2 ) holds for any ε ∈ (0, 1
4 ). �

Correctness of ME-AS. Combining Lemmas 1, 4, and 5, we now prove:

Lemma 6 With probability at least 1 − δ, ME-AS returns an arm set V which satisfies θi(V ) ≥
(1− ε) θi(B) for all i ≤ k.

Proof : If the premature event does not occur, we have that µ ≤ θk(B). Provided that ME has
succeeded, Lemma 5 has showed that, with probability at least 1 − δ

4 , ME-AS terminates at µ ∈
[ 1
8θk(B), θk(B)]. ME having succeeded ensures θi(S) ≥ (1 − ε

2 )θi(B) for all i ≤ k. Hence,
µs ≤ θk(S). Then, by Lemma 4, we know that with probability at least 1 − δ

4 , the following holds
for all i ≤ k:

θi(V ) ≥ (1− ε/2)θi(S)

≥ (1− ε/2)2θi(B) ≥ (1− ε)θi(B).

The premature event occurs with probability at most δ4 . By Lemma 1, ME fails with probability only
at most δ4 when µ ≤ θk(B). Lemma 6 thus follows from the union bound. �

Sample Complexity of ME-AS. We first analyze the cost of ME and US under a specific µ. This is
trivial for US, for which the answer is obviously O( kε2

1
µ log k

δ ) (recall that |S| ≤ 4k).
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Regarding the `-th round of ME, we know |Sl| = n
2l−1 , ε` = (3/4)`−1ε/16, δ` = (1/2)`−1δ/8, and

µ` =
∏l−1
j=1(1− εj)u1 ≥ (1− ε/2)µ ≥ 7/(8µ). Hence, the cost of ME is bounded by:

∞∑
`=1

12

ε`2
1

µ`
log

(
6k

δ`

)
|S`|

= O

( ∞∑
`=1

12

(
(

3
4

)`−1 ε
16 )2

1

µ

(
log

k

δ
+ `+ 1

)
n

2`−1

)

= O

( ∞∑
`=1

(
8

9

)`−1
n

ε2
1

µ

(
log

k

δ
+ `

))

= O

(
n

ε2
1

µ
log

k

δ

)
.

We have proved that one for-iteration of ME-AS (i.e., Lines 3-6 of Algorithm 1) under a specific µ
has cost O( kε2

1
µ log k

δ ). The cost doubles each time when we halve the parameter µ, until µ drops
below θk(B)/4. Hence, the total complexity so far is O( nε2

1
θk(B) log k

δ ).

It remains to show that if ME-AS terminates at µ < θk(B)/8, the extra cost is still bounded by
O( nε2

1
θk(B) log k

δ ) in expectation. From Lemmas 1 and 5, we know that, at every µ < θk(B)/8,
ME-AS fails to terminate with probability at most δ/2. Thus, its cost for all µ < θk(B)/8 is
bounded by

O

(
n

ε2
1

θk(B)
log

k

δ

) ∞∑
i=1

(
2i−1

)(δ
2

)i−1

= O

(
n

ε2
1

θk(B)
log

k

δ

)
.

We thus have proved Theorem 1.

Theorem 1 ME-AS solves the k-AS problem with expected cost O
(
n
ε2

1
θk(B) log k

δ

)
.

B.3 Lower Bound

This subsection serves as a proof for:

Theorem 2 For any ε ∈
(
0, 1

4

)
and δ ∈

(
0, 1

48

)
, given any algorithm, there is an instance of the

k-AS problem on which the algorithm must entail Ω( nε2
1

θk(B) log k
δ ) cost in expectation.

Hard Instances. We use a1, . . . , an to represent the n arms in B. Let Ix denote the collection of
all the x-sized subset of U = {a2, . . . , an}. For each I ∈ Ik ∪ Ik−1, we create an instance with:

θ(a1) = (1 + 4ε)θ (9)
θ(ai) = (1 + 8ε)θ, ∀ai ∈ I (10)
θ(ai) = θ, ∀ai ∈ U \ I (11)

where θ is an arbitrary real value in (0, 1
12 ).

We use ΘI to denote the instance associated with I . Notice for ε ∈
(
0, 1

4

)
, (1 − ε)(1 + 4ε)θ > θ

and (1 − ε)(1 + 8ε)θ > (1 + 4ε)θ. Thus, by the problem definition of k-AS, any algorithm, with
probability at least 1− δ, must return {a1} ∪ I for I ∈ Ik−1 and return I for I ∈ Ik.

Deterministic Algorithms. We will first consider an algorithm A deterministic in the following
sense. At the beginning, the first arm that A samples from is fixed. From then on, iteratively, the
next arm to sample from is always a function of the results of the previous samples (i.e., which
arms have been sampled, in what order, and what are the results). In this way, A can be uniquely
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described by a history W , which is the sequence of arms chosen at each step, and the result of each
sample. Finally, the output of A is a function of W .

It is important to note thatW is a random variable, due to the randomness from the arms, namely, the
samples taken from them are random. Even on a specific problem instance, various histories W can
occur with different probabilities. Therefore, the cost of A (i.e., the length of W ) is still a random
variable; and also A may choose to fail on some W , provided that the overall failure probability on
the instance is at most δ.

The crux of our proof is to show that, for any deterministic algorithm A, there exists I ∈ Ik−1

such that A must take at least Ω
(
n
ε2

1
θ ln k

δ

)
samples in expectation to solve the k-AS problem on

instance ΘI . Assume, on the contrary, that for any I ∈ Ik−1,A takes at most n
36864ε2

1
θ ln k

δ samples
in expectation. We will prove thatAmust fail with a probability greater than δ on some instance ΘI

with I ∈ Ik.

A Deterministic Lower Bound. Set T = 1
2304ε2

1
θ ln k

δ . Define random variable Tj be the number
of samples that A takes from arm aj . It is easy to see that Tj > 0 (i.e., A must sample at least once
from aj).

Given a specific I ∈ Ik−1, denote by EI [Tj ] the expectation of Tj when A runs on ΘI . At most
n/4 arms aj ∈ U \ I satisfy

EI [Tj ] >
1

9216ε2
1

θ
ln
k

δ
.

Since k ≤ n/2, at least n− k− n
4 ≥

n−k
2 arms aj ∈ U \ I satisfy EI [Tj ] ≤ 1

9216ε2
1
θ ln k

δ . We refer
to these arms as ordinary arms. For any such an arm aj , by Markov’s inequality, we know:

Pr
I

[Tj > T ] <
EI [Tj ]

T
≤ 1

4
, (12)

where the subscript I of PrI (just like the subscript in EI ) indicates “conditioned on the specific
instance I”.

Now let us fix an ordinary arm aj . Recall that each of the Tj samples that A draws from aj is either
1 or 0. Let X be the sum of all those Tj samples. Set ∆ =

√
θT ln(k/δ) and define EA be the event

where both Tj ≤ T and X > θTj −∆ are true.

Lemma 7 EA happens with probability at least 1/2.

Proof : By substituting θ(aj) = θ, we can upper bound the probability of EA not happening by:

Pr
I

[Tj > T ] + Pr
I

[Tj ≤ T,X − θTj ≤ −∆]

≤ 1

4
+ Pr

I

[
Tj ≤ T,X − θTj ≤ −

√
θTj ln(k/δ)

]
=

1

4
+

T∑
t=1

Pr [Tj = t] · Pr
[
X − θt ≤ −

√
θt ln(k/δ)

]
≤ 1

4
+

T∑
t=1

Pr [Tj = t] · exp

(
−1

2
ln
k

δ

)

=
1

4
+ exp

(
−1

2
ln
k

δ

)
=

1

4
+

(
δ

k

)1/2

≤ 1

2

where the first inequality used (12), and the second inequality is due to Chernoff bound (5). �

Let V be the arm set returned by A and EB be the event that V = I ∪ {a1}. Define event ES =
EA ∩ EB . As A (when executed on ΘI ) returns I ∪ {a1} with probability at least 1 − δ, we know
that

Pr
I

[ES ] ≥ 1− δ − 1/2 ≥ 23/48. (13)
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Let us focus on one specific history W . Consider the instance I ∪ {aj} ∈ Ik, which can be
conveniently understood as raising the mean of arm aj from θ to (1 + 8ε)θ in the instance I . Denote
by PrI∪{aj}[W ] the probability of W when A runs on ΘI∪{aj}, and similarly, by PrI [W ] the
probability of W on ΘI .

Lemma 8 For any ε ∈ (0, 1
4 ), δ ∈ (0, 1

48 ), when conditioned on ES , it holds that

PrI∪{aj}[W ]

PrI [W ]
≥ 5δ

k
.

Proof : As the mean of aj is larger under ΘI∪{aj}, the ratio of the two probabilities is minimized
when the fewest samples on aj turn out to be 1 inW . Recall that the event ES ensuresX > θTj−∆.
With this, we can derive

PrI∪{aj}[W ]

PrI [W ]

≥ [(1 + 8ε) θ]
θTj−∆

θθTj−∆

[1− (1 + 8ε) θ]
(1−θ)Tj+∆

(1− θ)(1−θ)Tj+∆

=

[
(1 + 8ε)

(
1− (1 + 8ε) θ

1− θ

) 1−θ
θ

]θTj−∆

(
1− (1 + 8ε) θ

1− θ

)∆
θ

≥

[
(1 + 8ε)

(
1− (1 + 8ε) θ

1− θ

) 1−θ
θ

]θTj−∆

(1− 12εθ)
∆
θ , (14)

where the last inequality used the fact that 1− (1 + 8ε) θ ≥ (1− θ) (1− 12εθ) for any θ ∈
(
0, 1

12

)
.

For any x ∈ (0, 1
4 ), it holds that e−1 ≥ (1− x)

1
x ≥ e−2. Using this fact and plugging in ∆ =√

θT ln(k/δ) and T = 1
2304ε2

1
θ ln k

δ , we can bound the second term of (14) as:

(1− 12εθ)
∆
θ = (1− 12εθ)

1
48εθ ln k

δ

≥ e−
1
2 ln(k/δ) =

√
δ/k. (15)

To bound the first term of (14), let us define g(θ) = (1−(1+8ε)θ
1−θ )

1−θ
θ . Taking the partial derivative

of ln g(θ) with respect to θ gives:

∂ ln g(θ)

∂θ
= − 1

θ2
ln

(
1− 8ε

θ

1− θ

)
−
(

1

θ
− 1

)
8ε

1− 8ε θ
1−θ

1

(1− θ)2
. (16)

It is not hard to verify that for any θ ∈
(
0, 1

12

)
, ε ∈

(
0, 1

4

)
, the RHS of (16) is strictly less than 0,

which implies

g(θ) ≥ g
(

1

12

)
= eln(1− 8

11 ε)
11

≥ eln(1−8ε) = 1− 8ε.

Moreover, observe that

(1 + 8ε)

(
1− (1 + 8ε) θ

1− θ

) 1−θ
θ

= (1 + 8ε)

(
1− 8ε

θ

1− θ

) 1−θ
θ

< (1 + 8ε) e−8ε.
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When ε ∈ (0, 1
4 ), (1 + 8ε) e−8ε is strictly less than 1. Therefore, we have:[

(1 + 8ε)

(
1− (1 + 8ε) θ

1− θ

) 1−θ
θ

]θTj−∆

≥

[
(1 + 8ε)

(
1− (1 + 8ε) θ

1− θ

) 1−θ
θ

]θT
≥ [(1 + 8ε) (1− 8ε)]

θT

=
(
1− 64ε2

) 1
2304ε2

ln k
δ

≥ (δ/k)1/18.

Combining the above with (15), we have
PrI∪{aj}[W ]

PrI [W ] ≥ (δ/k)5/9 ≥ 5δ/k for any δ ∈ (0, 1
48 ).

�

We will now proceed to analyze the probability of EB when A is executed on ΘI∪{aj}. For this
purpose, define 1S(W ) to be an indicator function that equals 1 if the history W results in the
occurrence of ES , and 0 otherwise (note that once W is given, the output of A is fully determined,
and hence, so is ES). With this, we can derive:

Pr
I∪{aj}

[EB ] ≥ Pr
I∪{aj}

[ES ]

=
∑

W s.t. 1S(W ) = 1

Pr
I∪{aj}

[W ]

(by Lemma 8) ≥
∑

W s.t. 1S(W ) = 1

Pr
I

[W ] · 5δ

k

≥ (5δ/k) Pr
I

[ES ]

(by (13)) > 2δ/k.

Therefore, we have proved that for any I ∈ Ik−1 and any ordinary arm aj ∈ U \ I , the failure
probability of A under instance ΘI∪{aj} exceeds 2δ

k .

Recall that for any I ∈ Ik−1, there are at least n−k2 ordinary arms aj in U \ I . Summing up the
failure probabilities of A on the instances ΘJ of all J ∈ Ik leads to:∑

J∈Ik

Pr
J

[V 6= J ]

≥
∑
J∈Ik

∑
aj∈J

Pr
J

[V = J ∪ {a1} \ {aj}]

=
∑

I∈Ik−1

∑
aj∈U\I

∑
J ∈ Ik s.t.

I ∪ {aj} = J

Pr
J

[V = I ∪ {a1}]

=
∑

I∈Ik−1

∑
aj∈U\I

Pr
I∪{aj}

[V = I ∪ {a1}]

=
∑

I∈Ik−1

∑
aj∈U\I

Pr
I∪{aj}

[EB ]

>
∑

I∈Ik−1

n− k
2
· 2δ

k

=

(
n− 1

k − 1

)
n− k
k

δ =

(
n− 1

k

)
δ = |Ik|δ.
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By the pigeon hole principle, there is at least one J ∈ IK such that PrJ [V 6= J ] > δ. As this is
not allowed, we conclude that A must take at least n

36864ε2
1
θ ln k

δ samples on the ΘI of at least one
I ∈ Ik−1.

Randomized Algorithms. It is standard to extend the above deterministic lower bound to random-
ized algorithms—such an argument can be found, for example, in [16]. With this, we complete the
whole proof of Theorem 2.

C Analysis of Top-kadd Arm Selection
Recall that we define kadd-AS by changing the multiplicative guarantee θi(V ) ≥ (1 − ε)θi(B) in
k-AS to an additive guarantee θi(V ) ≥ θi(B)− ε′.
The algorithm of kadd-AS is very similar to k-AS. As we do not require a multiplicative guaran-
tee here, we simply drop the “guess” stage and adjust the parameters appropriately, as shown in
Algorithm 7, 8. The sample complexity of AME is exactly the same as the algorithm in [10] for
EXPLORE-k as shown in Theorem 3. However our problem guarantees that θi(V ) ≥ θi(B)− ε′ for
all i ∈ [k] while EXPLORE-k guarantees that θi(V ) ≥ θk(B) − ε′ for all i ∈ [k] as we discussed
in Section 1.2. Thus, kadd-AS achieves a strictly stronger guarantee than EXPLORE-k. For the low-
er bound, as the kadd-AS problem is stronger than EXPLORE-k, the lower bound for EXPLORE-k
directly applies to kadd-AS.
Algorithm 7: Additive Median Elimination (AME)
1 input: B, ε, δ, k
2 S1 = B, ε1 = ε/16, δ1 = δ/8 and ` = 1;
3 while |S`| > 4k do
4 sample every arm a ∈ S` for Q` = (12/ε2`) log(6k/δ`) times;
5 for each arm a ∈ S` do
6 its empirical value θ̂(a) = the average of the Q` samples from a;
7 a1, . . . , a|S`| = the arms sorted in non-increasing order of their empirical values;
8 S`+1 = {a1, . . . , a|S`|/2};
9 ε`+1 = 3ε`/4, δ`+1 = δ`/2 and ` = `+ 1;

10 return S`;

Algorithm 8: Additive Uniform Sampling (AUS)
1 input: S, ε, δ, k
2 sample every arm a ∈ S for Q = (96/ε2) log(4|S|/δ) times;
3 for each arm a ∈ S do
4 its US-empirical value θ̂US (a) = the average of the Q samples from a;
5 a1, . . . , a|S| = the arms sorted in non-increasing order of their US-empirical values;
6 return {(a1, θ̂

US (a1)), . . . , (ak, θ̂
US (ak))}

Theorem 3 AME solves the kadd-AS problem with expected cost O
(
n
ε2 log k

δ

)
.

Proof : The proof the Theorem 3 directly follows Lemma 1 to Lemma 4, except that we change
the multiplicative guarantee into the additive guarantee and utilize the Chernoff bound (6) in the
analysis instead. �

D Analysis of k-MOST CONNECTED VERTEX
This section is devoted to the proof of Theorem 4:

Theorem 4 For any ε ∈
(
0, 1

12

)
and δ ∈

(
0, 1

48

)
, the following statements are true about any

k-MCV algorithm:

• when degk(B) ≥ Ω
(

1
ε2 log n

δ

)
, there is an instance on which the algorithm must probe

Ω( nε2
m

degk(B) log k
δ ) edges in expectation.
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• when degk(B) < O( 1
ε ), there is an instance on which the algorithm must probe Ω(nm)

edges in expectation.

Proof of Theorem 4 for Large degk(B). We prove the first branch of the theorem by a reduction
from k-AS. Let A be an algorithm solving k-MCV with expected cost Q. We will deploy A to
solve the hard k-AS instances created earlier in the proof of Theorem 2 with sample complexity
Q, and thereby obtaining a lower bound for Q. Recall that, to prove Theorem 2 in Appendix B.3,
we associated each I ∈ Ik−1 with an instance ΘI for k-AS that is described by (9), (10), and (11).
From ΘI , we construct a random hidden bipartite graphG = (B,W,E) with |B| = n and |W | = m
where m ≥ 24

ε2
1
θ log n

δ . For the i-th black vertex, we independently make each edge incident on it
solid with probability θ(ai). The graph G thus constructed is fed as an k-MCV input to A. Finally,
we select the arm ai into the solution of k-AS if and only if A includes the i-th black vertex in its
(k-MCV) solution.

We denote by di the degree of the i-th black vertex in G; notice that di is a random variable. Set
t = θm. By Chernoff bound, we know:

Pr [d1 ≤ (1− ε/2)(1 + 4ε)θm]

= Pr [d1 ≤ (1− ε/2)(1 + 4ε)t]

≤ exp

(
− (ε/2)2

2
(1 + 4ε)t

)
.

Therefore, if t ≥ 24
ε2 log n

δ and ε ∈ (0, 1
12 ), with probability at least 1− δ

n , we have d1 ≥ (1− ε
2 )(1+

4ε)t ≥ (1+3ε)t. Similarly, we can show that with probability at least 1− δ
n , we have di ≥ (1+7ε)t

for any ai ∈ I and di ≤ (1 + ε)t for any ai ∈ U \ I . Notice that both (1− ε)(1 + 7ε)t > (1 + ε)t
and (1− ε)(1 + 3ε)t > (1 + ε)t hold. By the union bound, with probability at least 1− δ, A must
select the first vertex and the vertices corresponding to the arms of I as its (k-MCV) solution set.
Thus, we have obtained an (ε, 2δ)-approximate algorithm that solves k-AS on instance ΘI .

On the other hand, the proof of Theorem 2 has showed that any (ε, 2δ)-approximate k-AS algorithm
must take in expectation Ω( nε2

1
θk(B) log k

2δ ) samples on the ΘI of at least one I ∈ Ik−1. It thus
follows that Q = Ω( nε2

m
degk(B) log k

δ ).

Proof of Theorem 4 for Small degk(B). Let us define the single-vertex problem:

Suppose that t < 1−2ε
2ε is a given positive integer. The bipartite graph only has one black

vertex b, andm ≥ max{t+1, 64}white vertices. The goal is to distinguish whether deg(b)
is t or t+ 1 with probability at least 15

16 .

We now give a lower bound for the above problem.

Lemma 9 Any algorithm solving the above single-vertex problem must issue Ω(m) probe opera-
tions.

Proof : Our proof is based on a sampling lower bound established in [3] for evaluating symmetric
functions2. It is showed in [3] that any sampling algorithm for symmetric functions can be simulated
by an i.i.d. sampling algorithm under some specific conditions. Therefore, the sampling lower bound
can be measured by the distance between two i.i.d. distributions. Formally, we need the following
definition:

Definition 1 [Total Variational Distance] Suppose X and Y are two discrete distributions with a
common support S. The total variational distance (also known as statistical distance) between X
and Y is defined as

dTV(X,Y ) =
1

2

∑
s∈S
|Pr[X = s]− Pr[Y = s]|.

Suppose f(x1, . . . , xm) : Sm → Z is a symmetric function where S and Z are arbitrary sets. For
any x ∈ Sm, we use Ux to denote the distribution of i.i.d. query outcomes on x supported on X ,
i.e., Ux(s) = 1

m

∑m
i=1 1(xi = s),∀s ∈ S where 1() is an indicator function.

2A function is a symmetric function if permuting the input arguments does not change the function value.
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Lemma 10 ([3, Theorem 4.21]) For any ε ∈ (0, 1), δ ∈ ( 2
m ,

1
8 ), given two inputs x, y ∈ Sm, if a

sampling algorithmA can distinguish whether f = f(x) or f = f(y) with probability at least 1−δ
within worst case sampling complexity at most m2 −

√
m/(6δ), it must take at least

1

8 · dTV(Ux, Uy)
ln

1

8δ

samples in the worst case.

Consider the simple symmetric function deg(b) = f(x1, ..., xm) =
∑m
i=1 xi where xi is 1 if the

edge connecting b and the i-th white vertex is solid, and 0 otherwise. We use x to denote an input
with f = t. Then, we have that Ux(0) = m−t

m and Ux(1) = t
m . Similarly, we use y to denote an

input with f = t+ 1 and we have that Uy(0) = m−t−1
m and Uy(1) = t+1

m .

By the definition of dTV, it is easy to see that dTV(Ux, Uy) = 1
m . Therefore, we conclude that the

lower bound of the single vertex problem is Ω(m).

�

The lemma below shows a reduction from the above problem to k-MCV.

Lemma 11 For any ε ∈ (0, 1
12 ), δ ∈ (0, 1

48 ), given an (ε, δ)-approximate k-MCV algorithmA with
expected sample complexity Q , we can design an algorithm B to solve the single-vertex problem
with at most 32Q/n probe operations.

Proof : We reduce the single-vertex problem to 1-MCV as follows. First, pick a value n ≥ 32 and
construct an edge hidden graph G with n black vertices and m ≥ max{t + 1, 64} white vertices.
Denote the set of black vertices as {b1, . . . , bn}. Randomly choose a black vertex bi as the pivot
vertex. For any bj with j 6= i, we connect it to twhite vertices randomly chosen without replacement
(i.e., pick a random t-sized subset of white vertices over all the

(
m
t

)
possible choices).

Algorithm B solves the single-vertex problem by simulating algorithm A in solving the 1-MCV
problem on G. Whenever A probes a hidden edge of bj with j 6= i, B simply does the same. On
the other hand, when A probes a hidden edge of the pivot vertex bi, B probes a hidden edge of the
vertex b in the single-vertex problem, and passes the result toA. If (i) the pivot vertex is probed less
than 32Q

n times and at the same time (ii) A returns a vertex bj with j 6= i, B decides deg(b) = t. In
all other cases, B decides deg(b) = t+ 1.

This finishes the description of B. Its worst case cost is clearly 32Q
n (for the single-vertex problem).

Next, we show that B decides deg(b) correctly with probability at least 15
16 .

Consider first the case of deg(b) = t. All the black vertices in G have degrees exactly t. Denote
by Tb the number of probe operations that B performs on b. As the pivot vertex is indistinguishable
from any other verties, we have E[Tb] = Q

n . Markov’s inequality then gives:

Pr

[
Tb ≥

32Q

n

]
≤ 1

32
.

If Tb < 32Q
n , B errs if and only if A returns bi. Since b is indistinguishable, the probability that

A returns bi is 1/n (recall that every black vertex has the same chance of being the pivot vertex).
Therefore, with probability at least 1− 1

n −
1
32 ≥

15
16 , B returns a correct answer.

Next, consider the case of deg(b) = t + 1. B makes a mistake only if Tb < 32Q
n and A returns a

vertex bj with j 6= i. SinceA is an (ε, δ)-approximate 1-MCV algorithm, the probability that B errs
is at most δ ≤ 1

16 . Hence, once again, it is correct with probability at least 15
16 . �

The second branch of Theorem 4 follows from Lemmas 9 and 11.

E Analysis of Top-kavg Arm Selection
In this section we analyze our algorithm for kavg-AS as shown in 4, 5, 6. We first present the analysis
of Quartile Elimination in Appendix E.1. Next, we prove Theorem 5 in Appendix E.2. Finally, we
prove Theorem 6 in Appendix E.3.
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E.1 Analysis of Quartile Elimination

This subsection serves as a proof for the following lemma:

Lemma 12 In Quartile Elimination, if µ ≤ θavg(B), with probability at least 1− δ
4 , QE returns an

arm set S satisfying θavg(S) ≥ (1− ε
2 )θavg(B).

Focus on the `-th round for a specific `. For any subset X ⊆ S`, let θ̂avg(X) = 1
k

∑k
i=1 θ̂i(X).

We use m` to denote the median of the means of all the arms in S`, and τ` to denote the largest
empirical value of the eliminated arms in this round. For each i ≤ k, define a Boolean variable X`,i

which equals 1 if θ̂i(S`) < m` +
ε`θavg(S`)

2 , and 0 otherwise. Let X` = 1
k

∑k
i=1 (θi(S`)−m`)X`,i.

Furthermore, define EA` to be the event that X` ≤ ε`θavg(S`) holds, and EB` to be the event that
τ` < m` +

ε`θavg(S`)
2 holds.

Lemma 13 In Round `, if both EA` and EB` occur, then θavg(S`+1) ≥ (1− ε`)θavg(S`) holds.

Proof : First, we claim that, under EA` and EB` , it holds that

1

k

k∑
i=1

θi(S`+1) ≥ 1

k

k∑
i=1

((1−X`,i) θi(S`) +X`,im`) . (17)

To see this, consider an arm ai(S`) with i ≤ k. If X`,i = 0, by definition, we have θ̂i(S`) ≥
m` +

ε`θavg(S`)
2 . Since EB` occurs, we have that

θ̂i(S`) ≥ m` +
ε`θavg(S`)

2
> τ`.

Therefore, we know that ai(S`) has not been eliminated in round `. Since ai(S`) is one of the top-k
arms in S`, it must be one of the top-k arms in S`+1. Hence, for each arm ai(S`) with i ≤ k and
X`,i = 0, θi(S`) appears in both LHS and RHS of (17) exactly once. Notice that in QE, k ≤ |S`|4 .
After eliminating |S`|4 arms, there exist at least k arms with means at least m`. Thus, each term in
LHS of (17) is at least m`. Therefore, we conclude that our claim (17) is true. Now, we can see that:

θavg(S`+1) ≥ 1

k

k∑
i=1

((1−X`,i) θi(S`) +X`,im`)

= θavg(S`)−X`

(by EA` ) ≥ (1− ε`)θavg(S`).
�

Lemma 14 Under the condition µ ≤ θavg(B), if for all j < `, Quartile Elimination ensures
θavg(Sj+1) ≥ (1− εj)θavg(Sj) (18)

then, with probability at least 1− δ`, θavg(S`+1) ≥ (1− ε`)θavg(S`) holds.

Proof : By Lemma 13, it suffices to prove that with probability no less than 1− δ`, both EA` and EB`
occur.

First we show that Pr[EA` ] = Pr[X` ≤ ε`θavg(S`)] ≥ 1 − δ`
2 . From (18), µ` ≤

∏`−1
j=1(1 −

εj)θavg(S1) ≤ θavg(S`). For any i ≤ k, define β`,i = max{0, θi(S`) − m` − ε`θavg(S`)
2 } and

Y`,i = β`,iX`,i. We have:

X` ≤ 1

k

k∑
i=1

Y`,i +
1

k

k∑
i=1

ε`θavg(S`)

2
X`,i

≤ 1

k

k∑
i=1

Y`,i +
ε`θavg(S`)

2
.
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Hence, it suffices to show Pr[EA` ] ≤ Pr[ 1
k

∑k
i=1 Y`,i ≤

ε`θavg(S`)
2 ] ≤ δ`

2 . Let Y` =
∑k
i=1 Y`,i. We

have:

Pr

[
1

k

k∑
i=1

Y`,i ≥ ε`θavg(S`)/2

]

= Pr

[
k∑
i=1

ε`Q`Y`,i/2 ≥ ε2`Q`θavg(S`)k/4

]

= Pr

[
exp

(
k∑
i=1

ε`Q`Y`,i/2

)
≥ exp

(
ε2`Q`θavg(S`)k/4

)]

≤ E [exp (ε`Q`Y`/2)]

exp (ε2`Q`θavg(S`)k/4)
. (19)

For all ai(S`) satisfying θi(S`) −m` − εθavg(S`)
2 > 0 where i ≤ k, we use U to denote the set of

their indexes and I to denote the collection of all non-empty subsets of U . For any I ∈ I, denote
by EI the event that both of the following are true: (i) X`,i = 1 holds for all i ∈ I , and (ii) X`,i = 0
holds for all i ∈ U\I . We have:

Pr
[
EI
]
≤ Pr

[∧
i∈I

(X`,i = 1)

]

≤ Pr

[∑
i∈I

θ̂i(S`) < |I|
(
m` +

ε`θavg(S`)

2

)]

= Pr

[∑
i∈I

θ̂i(S`) <
∑
i∈I

θi(S`)−
∑
i∈I

β`,i

]

≤ exp

(
−
(∑

i∈I β`,i
)2

2

Q`∑
i∈I θi(S`)

)
. (20)

where the last inequality is due to Chernoff bound (5).

Let ηI =
∑
i∈I β`,i∑
i∈I θi(S`)

. By (20), we have:

E [exp (ε`Q`Y`/2)]

≤
∑
I∈I

exp

(
ε`Q`

∑
i∈I

β`,i/2

)
Pr
[
EI
]

+ Pr [Y` = 0]

≤
∑
I∈I

exp

(
ηI

(
ε`
2
− 1

2
ηI

)
Q`
∑
i∈I

θi(S`)

)
+ 1

≤ 2k exp

(
ε2`
8
Q`θavg(S`)k

)
.

Therefore, we get:

Pr

[
1

k

k∑
i=1

Y`,i ≥
ε`θavg(S`)

2

]

≤ 2k exp

(
−ε

2
`

8
Q`θavg(S`)k

)
≤

(
2

e

)k
δ`
2
≤ δ`

2
.

Next, we prove that Pr[EB` ] = Pr[τ` < m`+
ε`θavg(S`)

2 ] ≥ 1− δ`
2 . For any i ≤ |S`|, define a Boolean

variable Zi that equals 1 if θ̂i(S`) ≥ m` +
ε`θavg(S`)

2 , or 0 otherwise. It suffices to show that at least
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|S`|
4 arms have empirical values smaller than m` +

ε`θavg(S`)
2 , i.e.,

∑|S`|
i=1 Zi ≤

3|S`|
4 . We show that

with a large probability
∑|S`|
i=|S`|/2 Zi ≤

|S`|
4 holds. By Chernoff bounds, for any |S`|/2 ≤ i ≤ |S`|,

we have:

E [Zi] = Pr

[
θ̂i(S`) ≥ m` +

ε`θavg(S`)

2

]
≤ Pr

[
θ̂i(S`) ≥ θi(S`) +

ε`θavg(S`)

2

]
≤ exp

(
− ε

2
`

12
Q`θavg(S`)

)
.

Let λ = exp
(
− ε2`

12Q`θavg(S`)
)

. It is easy to verify that λ < 1
2 . By Chernoff bound (7), we have

Pr

 |S`|∑
i=|S`|/2

Zi ≥
|S`|
4


≤

((
λ

1/2

)1/2(
1− λ
1/2

)1/2
)|S`|/2

≤
(√

2λ ·
√

2
)|S`|/2

≤ exp

(
|S`|
2

(
ln (2)− ε2`

24
Q`θavg(S`)

))
≤ exp

(
−|S`|

2

ε2`
48
Q`θavg(S`)

)
≤ exp

(
− ε

2
`

24
Q`kθavg(S`)

)
≤ δ`

2
,

where the third to last inequality used the fact that ln (2)− ε2`
24Q`θavg(S`) ≤ −

ε2`
48Q`θavg(S`) by our

setting of Q` and the second to last inequality used the fact that |S`| ≥ 4k.

�

Now, suppose QE terminates in L rounds. By summing up the failure probabilities and the errors of
all rounds in QE, we have that

∑L
i=1 δi ≤ δ and

∏L
i=1(1 − εi) ≥ 1 − ε/2. Thus, we complete the

proof of Lemma 12.

E.2 Correctness and Sample Complexity

Analysis of Uniform Sampling. Let us start with:

Lemma 15 In Uniform Sampling, if µs ≤ θavg(S), then with probability at least 1− δ
4 , US returns

an arm set V which satisfies θavg(V ) ≥ (1− ε
2 )θavg(S).

Proof : We use U to denote the collection of all k-sized subsets of S. Consider the subset U∗ ∈ U
with the largest average mean. By definition we have θavg(S) = θavg(U

∗). By Chernoff bound (2),

Pr
[
θ̂avg(U

∗) ≤
(

1− ε

4

)
θavg(U

∗)
]

≤ exp

(
− ε

2

48
Qθavg(S)k

)
.
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Consider an arbitrary set U ∈ U . Let α =
θavg(U

∗)
θavg(U)

(
1− ε

4

)
− 1. If θavg(U) < (1 − ε/2)θavg(U

∗)

but θ̂avg(U) ≥ (1− ε/4)θavg(U
∗), we obtain:

Pr
[
θ̂avg(U) ≥

(
1− ε

4

)
θavg(U

∗)
]

= Pr
[
θ̂avg(U) ≥ (1 + α) θavg(U)

]
≤ exp

(
− ε

2

48
Qθavg(S)k

)
,

where the last inequality is due to Chernoff bounds (1) and (3) (we distinguish 0 < α < 1 and
α ≥ 1. The calculation details are similar to the proof of Lemma 3).

Notice that in US we have |S| ≤ 4k. Applying the union bound over all the subsets of size k, we
assert that the failure probability of US is at most(

|S|
k

)
exp

(
− ε

2

48
Qθavg(S)k

)
≤ δ

4
.

�

Next, we show that with high probability QE-AS terminates at µ ∈ [ 1
8θavg(B), θavg(B)]. If this is

not what happens, one of the following two events must have happened:

(1) Premature: QE-AS terminates when µ > θavg(B).

(2) Overdue: QE-AS does not terminate after invoking US with µ < 1
4θavg(B).

We say that QE succeeds if the arm set S it returns satisfies θavg(S) ≥ (1− ε
2 )θavg(B).

Lemma 16 Both of the following statements are true:

• The premature event happens with probability at most δ/4.

• If QE succeeds, the overdue event happens with probability at most δ/4.

Proof : The second statement directly follows from the proof of Lemma 5. For the first lemma, let
us focus on a specific guess µ. Let ν = µ

θavg(B) . We use U to denote the collection of all k-sized
subsets in S. Consider a specific U ∈ U . Let α = 2 µ

θavg(U) − 1. We claim:

Pr[θ̂avg(U) ≥ 2µ]

= Pr[θ̂avg(U) ≥ (1 + α)θavg(U)]

≤ δ/4

2ν
exp(−5

2
k). (21)

Notice that here we have α > 1. By Chernoff bound (3),

Pr[θ̂avg(U) ≥ (1 + α)θavg(U)]

≤ exp (−2Qµk/6) ≤ δ/4

4
exp(−5

2
k).

This proves (22) for 1 ≤ ν < 2.

When ν ≥ 2, by Chernoff bound (4),

Pr[θ̂avg(U) ≥ (1 + α)θavg(U)]

≤
(

e

2µ/θavg(U)

)2Qµk

≤
( e

2ν

)2Qµk

≤ (2/ν)2Qµk exp(−2Qµk/6)

≤ (2/ν)(δ/16) exp(−5

2
k),
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where the second inequality holds since µ
θavg(U) ≥ ν, and the third inequality holds since e/4 <

e−1/6. Thus, we complete the proof of (21).

Notice that the size of U is at most
(|S|
k

)
. Together, by the union bound, the probability of premature

event for a specific µ is at most (δ/4)/(2ν). We use µmin to denote the minimum µ that is greater
than θavg(B). Let νmin = µmin

θk(B) . Summing over all µ > θavg(B), we assert that the probability of
premature for QE-AS is at most

δ/4

2νmin
+

δ/4

4νmin
+

δ/4

8νmin
+ . . . ≤ δ/4

νmin
≤ δ/4.

�

The rest of the proof is almost the same as that for ME-AS in Appendix B.2, which leads us to:

Theorem 5 QE-AS solves the kavg-AS problem with expected cost O
(
n
ε2

1
θavg(B)

(
1 + log(1/δ)

k

))
.

E.3 Lower Bound

This subsection serves as a proof for:

Theorem 6 For any ε ∈
(
0, 1

12

)
and δ ∈

(
0, 1

48

)
, given any (ε, δ)-approximate algo-

rithm, there is an instance of the kavg-AS problem on which the algorithm must entail

Ω
(
n
ε2

1
θavg(B)

(
1 + log(1/δ)

k

))
cost in expectation.

We show that the lower bound of kavg-AS is the maximum of Ω
(
n
ε2

1
θavg(B)

log(1/δ)
k

)
and

Ω
(
n
ε2

1
θavg(B)

)
.

First Lower Bound. We reduce 1-AS to this problem. Suppose that for 1-AS, we have a bandit
with n′ arms. Let I = {a1, . . . , an′}. We associate an instance with I where exactly one arm in I
has mean (1 + 4ε)θ whereas all the other arms have mean θ. Without loss of generality, we assume
that a1 has mean (1 + 4ε)θ. Recall that in Theorem 2, we showed that for any (ε, δ)-approximate
1-AS algorithm, distinguishing the single arm with mean (1 + 4ε)θ in I takes Ω((n′ log 1

δ )/(ε2θ))
samples. We construct a hard instance for kavg-AS based on I .

Let n = kn′. We create n artificial arms as the input to algorithmA and divide them into n′ groups.
Each group contains exactly k arms. The i-th group contains the arms with indexes from (i−1)k+1
to ik. Each time when A attempts to sample an arm in the i-th group, we actually take a sample
from ai ∈ I and passes the result to A. If there exists an i such that more than 2k

3 arms returned
by A are from group i, we select ai ∈ I as the answer for 1-AS. Otherwise, we select an arbitrary
arm. Suppose thatA can solve kavg-AS within sample complexity Q. Since ε < 1/12, by definition
of kavg-AS, any feasible solution must contain at least 2k/3 arms in the first group. Thus, with
probability at least 1 − δ, we select a1 as the answer for 1-AS. Hence, A can solve 1-AS on the
instance I with n′ = n/k arms and θ = θavg(B), using Q samples as well. Therefore, we conclude
that

Q = Ω

(
n′

ε2
1

θ
log

1

δ

)
= Ω

(
n

ε2
1

θavg(B)

log(1/δ)

k

)
.

Second Lower Bound. We define the single-arm problem as follows: with probability at least 0.6,
distinguish whether a single-arm has mean θ or (1 + 4ε)θ.

Lemma 17 For any ε ∈ (0, 1
12 ), any algorithm solving the above single-arm problem must entail

Ω( 1
ε2

1
θ ) cost.

Proof : Our proof is based on a sampling lower bound established in [3, Theorem 4.7]. We need the
following definition:
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Definition 2 [Hellinger distance] Suppose X and Y are two discrete distributions with a common
support S. The Hellinger distance between X and Y is defined as

dH(X,Y ) =

√
1−

∑
s∈S

(Pr[X = s])1/2(Pr[Y = s])1/2.

It is shown in [3] that given 0 < δ < 1
4 and two distributions X , Y on a common support with

d2
H(X,Y ) ≤ 1

2 , any algorithm distinguishing X and Y with failure error bounded by δ requires at
least 1

4d2
H(X,Y )

ln 1
δ samples. We use Uθ to denote the Bernoulli distribution with mean θ (similarly

for U(1+4ε)θ). From Definition 2, we have that

d2
H(Uθ, U(1+4ε)θ)

= 1−
√
θ · (1 + 4ε)θ −

√
(1− θ)(1− (1 + 4ε)θ)

≤ 16ε2θ.

Therefore, any algorithm distinguishing two Bernoulli distribution with mean θ and (1 + 4ε)θ must
take at least Ω( 1

ε2
1
θ ) samples. �

The second lower bound Ω( nε2
1

θavg(B) ) is established by a reduction from the above single-arm prob-
lem. The proof is somewhat similar to the reduction in the proof of Lemma 11. First we show that
for any ε ∈ (0, 1

12 ), δ ∈ (0, 1
48 ), given an (ε, δ)-approximate kavg-AS algorithm A with expected

sample complexity Q, we can design an algorithm B to solve the single-arm problem using at most
64Q/n samples.

Create a set of n artificial arms denoted as U = {a1, . . . , an}. We randomly choose a k-sized subset
S ⊆ U and an arm ai ∈ S as the pivot arm. For any arm aj ∈ S with j 6= i, we set θ(aj) = (1+4ε)θ
and for each arm aj ∈ U\S, we set θ(aj) = θ.

Algorithm B solves the single-arm problem by simulating algorithm A. When A samples from an
arm aj with j 6= i, B simply do the same. On the other hand, when A samples the pivot arm ai, B
samples from arm a as in the single-arm problem, and passes the result to A. If (i) the pivot arm is
sampled less than 64Q

n times and at the same time (ii) A returns an arm set V not containing ai, B
decides that θ(a) = θ. In all other cases, B decides that θ(a) = (1 + 4ε)θ.

Consider the case of θ(a) = θ. We use Ta to denote the number of samples taken form a. Let
S′ = S\{ai}. Since ai is uniformly distributed in U\S′ and k ≤ n/2, we have:

E[Ta] ≤ Q

n− k + 1
≤ 2Q

n
.

Therefore, Pr[Ta ≥ 64
n ] ≤ 1

32 . If Ta < 64
n , B errs if and only if ai ∈ V holds. Notice that in this

case, any feasible solution must contain at least 2k/3− 1 arms with mean (1 + 4ε)θ. Therefore with
probability at least 1− δ, A returns at most k3 + 1 arms with mean θ. Thus,

Pr[ai ∈ V ] ≤ δ + (1− δ) k/3 + 1

n− k + 1
≤ 0.35.

Thus, with probability at least 1− 0.35− 1/32 ≥ 0.62, B outputs the correct answer.

Next, consider the case where θ(a) = (1 + 4ε)θ. In this case, any feasible solution must contain
at least 2k/3 arms with mean (1 + 4ε)θ. B errs only if Ta < 64Q/n and ai /∈ V . Since A is an
(ε, δ)-approximate kavg-AS algorithm, we have that Pr[ai ∈ V ] ≥ 2

3 (1− δ) ≥ 0.65. Therefore, by

the lower bound for the single-arm problem, we have that Q = Ω
(
n
ε2

1
θ

)
= Ω

(
n
ε2

1
θavg(B)

)
.

F Analysis of kavg-MOST CONNECTED VERTEX
Our kavg-AS algorithm, combined with the reduction described in Section 1.1, already settles kavg-
MCV with the sample complexity given in Table 1. Next, we prove the following lower bound.

Theorem 7 For any ε ∈
(
0, 1

12

)
and δ ∈

(
0, 1

48

)
, the following statements are true about any

kavg-MCV algorithm:
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• when degavg(B) ≥ Ω
(

1
ε2 log n

δ

)
, there is an instance on which the algorithm must probe

Ω

(
n

ε2
m

degavg(B)

(
1 +

log(1/δ)

k

))
edges in expectation.

• when degk(B) < O( 1
ε ), there is an instance on which the algorithm must probe Ω(nm)

edges in expectation.

Case degavg(B) ≥ Ω((1/ε2) log n
δ
). We first show a lower bound of

Ω((nm log 1
δ )/(ε2k degavg(B))), using the hard 1-AS instance constructed in the proof of

Theorem 6. Recall that the instance has a set I of n′ arms {a1, . . . , an′}. Construct from I a hidden
bipartite graph G = (B,W,E) where |B| = kn′ = n and |W | = m ≥ (24 log n

δ )/(ε2θ). Divide
B into n′ groups, each having k vertices. For each black vertex in the i-th group, we independently
make each edge incident on it solid with probability θ(ai).

Let A be an algorithm solving the kavg-MCV problem with sample complexity Q. We feed G as an
input toA. If more than k/2 vertices returned byA are from the group i, we return ai as the answer
for 1-AS. Otherwise, we return an arbitrary arm.

Set t = mθ. The same argument in the proof of Theorem 4 shows that if t ≥ 24
ε2 log n

δ , with
probability at least 1− δ, the degree of each black vertex in the first group is no less than (1 + 3ε)t,
and the degree of any other black vertex is no more than (1 + ε/2)t. Thus, with probability at
least 1 − 2δ, A returns a vertex set containing more than k/2 vertices from the first group. We
thus have actually obtained an (ε, 2δ)-approximate algorithm for 1-AS on instance I . However, we
already know that any (ε, δ)-algorithm solving instance I requires Ω((n′ log 1

δ )/(ε2θ)) samples. As
n = kn′, it follows that Q = Ω((nm log 1

δ )/(ε2k degavg(B))).

We then prove a lower bound of Ω(nm/(ε2 degavg(B))). Using the hard instance constructed in the
proof of the second lower bound of Theorem 6, we construct a random hidden bipartite graph G =
(B,W,E) with |B| = n and |W | = m ≥ (24 log n

δ )/(ε2θ) in the same way as in proving Theorem
4. We can show that with probability 1− δ

n , for each vertex b, deg(b)/m is within in (1±ε) factor of
the mean of the corresponding arm. Following essentially the same argument as Theorem 6, we can
show that, if an algorithmA can (ε, δ)-approximate kavg-MCV using Q samples, then we can solve
the single-arm problem using O(Qn ) samples. Hence we can get Q = Ω( nε2

1
θ ) = Ω( nε2

m
degavg(B) ).

Case degavg(B) < O(1/ε). The proof is almost the same as the second lower bound of Theorem
6. The only difference is to reduce the problem to the single vertex problem.

G Additional Experiments
We provide the additional experiment results in this section. First, in Appendix G.1 we give a
performance evaluation of k-MCV vs. δ as the supplementary of Section 6. Then, we provide
the experimental result for k-AS problem in Appendix G.2. Finally, we evaluate QE-AS for both
kavg-MCV and k-AS problems in Appendix G.3 and discuss the experimental results in Appendix
G.4
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Figure 2: Performance comparison for k-MCV vs. δ
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Figure 5: Performance comparison for kavg-MCV vs. ε
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Figure 6: Performance comparison for kavg-AS vs. ε
G.1 Evaluation for k-MCV vs. δ

We fix the parameter k = 20, ε = 0.05 and enumerate δ from 0.05 to 0.5. Again, we label the actual
error εa whenever the algorithm does not achieve the theoretical guarantees. The results are shown
in Figure 2.

G.2 Evaluation for k-AS

We use the same method as in Section 6 to build two bandit instances where the means of the arms
follow the power law distribution. Furthermore, recall that in Section 6, we build a bipartite graph
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for the 2-hop relationships with |B| = n and |W | = m. Utilizing such bipartite graph, we build a
bandit instance with n arms where the mean of the k-th arm equals degk(B)/m.

Again, we fix k = 20 and enumerate ε, δ separately. We label the actual error εa whenever the
algorithm does not achieve the theoretical guarantees. The results are shown in Figure 3 and Figure
4.

G.3 Evaluation for kavg-MCV and kavg-AS

The performance of QE-AS is stable when δ varies. Therefore, we only evaluate the performance of
QE-AS vs ε for both kavg-MCV and kavg-AS here, as shown in Figure 5 and Figure 6.

G.4 Discussion

The experimental results match our theoretical analysis. First we show a performance comparison
for k-MCV vs δ. Again, ME-AS outperforms AMCV in both sample cost and the actual error
occurred when δ varies. Similarly, we draw the same conclusion for these two algorithms on k-AS.
Moreover, as we claimed in Section 1, it costs less samples for k-MCV than k-AS for a specific
(ε, δ) since we do not need to probe the same edge twice. Finally, the experimental results also show
k-AS (k-MCV) usually require more samples than kavg-AS (kavg-MCV).
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