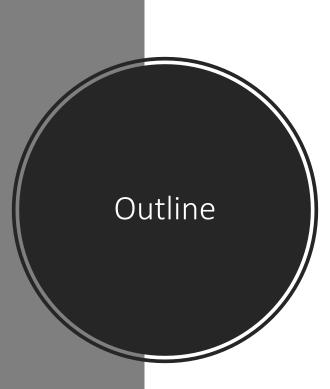
A unified variance-reduced accelerated gradient method for convex optimization

Guanghui Lan, Zhize Li, Yi Zhou

Geo

IBM **Research**



?

Convex finite-sum optimization Randomized incremental gradient methods

Our algorithm Future works Varag

Convergence results

N

• Numerical experiments

Problem of interest: convex finite-sum optimization

$$\psi^* := \min_{x \in X} \left\{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) + h(x) \right\}.$$

- Smooth and convex with L_i -Lipschitz continuous gradient over X
- Simple but possibly nonsmooth over *X*

Let $f(x) \coloneqq \frac{1}{m} \sum_{i=1}^{m} f_i(x)$, we assume that f is **possibly strongly convex** with modulus $\mu \ge 0$.

Problem of interest: convex finite-sum optimization

$$\psi^* := \min_{x \in X} \left\{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) + h(x) \right\}.$$

- Wide range of applications in machine learning, statistical inference and image processing.
- Take l₂-regularized logistic regression problem as an example

$$f_i(x) = l_i(x) := \frac{1}{N_i} \sum_{j=1}^{N_i} \log(1 + \exp(-b_j^i a_j^i x^T)), \ i = 1, \dots, m, \ w(x) = R(x) := \frac{1}{2} ||x||_2^2,$$

- f_i is the loss function based on training data $\{a_j^i, b_j^i\}_j^{N_i}$, or the loss function associated with agent *i* for a distributed optimization problem.
- Minimization of the empirical risk

$$f_i(x) = l_i(x) := \mathbb{E}_{\xi_i}[\log(1 + \exp(-\xi_i^T x))], \ i = 1, \dots, m,$$

- f_i given in the form of expectation where ξ_i models the underlying distribution for training dataset *i* (of agent *i* for a distributed problem)
- Minimization of the generalized risk

Randomized incremental gradient (RIG) methods

- Derived from SGD and the idea of reducing variance of the gradient estimator
- SVRG[JZ13] exhibits linear rate of convergence $\mathcal{O}\{(m + L/\mu)\log(1/\epsilon)\}$, same result for Prox-SVRG[XZ14], SAGA[DBL14] and SARAH[NLST17] for strongly convex problems
 - Update exact gradient \tilde{g} at the outer loop and a gradient of the component function in the inner loop
 - Variance of G_t vanishes as algorithm proceeds
- SVRG++[AY16] obtains $\mathcal{O}\{m\log(1/\epsilon) + L/\epsilon\}$ for smooth convex problems

They are NOT optimal RIG methods!

$$x_t = x_{t-1} - \eta G_t$$

$$\tilde{g} = \nabla f(\tilde{x})$$
$$G_t = \nabla f_{i_t}(x_{t-1}) - \nabla f_{i_t}(\tilde{x}) + \tilde{g}$$

$$\begin{aligned} y_i^t &= \begin{cases} \nabla f_i(x^t), & i = i_t, \\ y_i^{t-1}, & \text{otherwise,} \end{cases} \\ G_t &= \nabla f_i(x_t) - y_i^{t-1} + \frac{1}{m} \sum_{i=1}^m y_i^{t-1} \end{aligned}$$

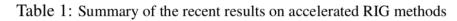
$$G_0 = \nabla f(\tilde{x})$$
$$G_t = \nabla f_{i_t}(x_{t-1}) - \nabla f_{i_t}(x_{t-2}) + G_{t-1}$$

Optimal RIG methods

Accelerated RIG methods: Catalyst[LMH15], RPGD[LZ17], RGEM[LZ18], and Katyusha[A17], etc.

- All exhibit $O\{(m + \sqrt{mL}/\mu)\log(1/\epsilon)\}$ for strongly convex problems
- Except Katyusha^{ns}[A17], none of these methods can be used directly to solve smooth convex problems. They required perturbation technique. Katyusha^{ns} is not advantageous over accelerated gradient method.
- Except RGEM[LZ18], none of the optimal methods can solve stochastic finite-sum problems
- They are assume the strongly convexity comes from regularizer term h(x)
- None of them are unified methods that can be adjust to ill-conditioned problem, e.g., μ is very small.

$$\psi^* := \min_{x \in X} \left\{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) + h(x) \right\}$$



Algorithms	Deterministic smooth strongly convex	Deterministic smooth convex
RPDG[18]	$\mathcal{O}\left\{(m+\sqrt{rac{mL}{\mu}})\lograc{1}{\epsilon} ight\}$	$\mathcal{O}\left\{(m+\sqrt{\frac{mL}{\epsilon}})\log\frac{1}{\epsilon} ight\}^1$
Catalyst[20]	$\mathcal{O}\left\{(m+\sqrt{rac{mL}{\mu}})\lograc{1}{\epsilon} ight\}^1$	$\mathcal{O}\left\{(m+\sqrt{\frac{mL}{\epsilon}})\log^2\frac{1}{\epsilon} ight\}^1$
Katyusha[1]	$\mathcal{O}\left\{(m+\sqrt{rac{mL}{\mu}})\lograc{1}{\epsilon} ight\}$	$\mathcal{O}\left\{(m\log\frac{1}{\epsilon} + \sqrt{\frac{mL}{\epsilon}})\right\}^1$
Katyusha ^{ns} [1]	NA	$\mathcal{O}\left\{\frac{m}{\sqrt{\epsilon}} + \sqrt{\frac{mL}{\epsilon}}\right\}$
RGEM[19]	$\mathcal{O}\left\{(m+\sqrt{rac{mL}{\mu}})\lograc{1}{\epsilon} ight\}$	NA

The Varag algorithm

Algorithm 1 The variance-reduced accelerated gradient (Varag) method

Input: $x^0 \in X, \{T_s\}, \{\gamma_s\}, \{\alpha_s\}, \{p_s\}, \{\theta_t\}, \text{ and a probability distribution } Q = \{q_1, \ldots, q_m\}$ on $\{1, \ldots, m\}.$ 1: Set $\tilde{x}^0 = x^0$ 2: for $s = 1, 2, \dots$ do Set $\tilde{x} = \tilde{x}^{s-1}$ and $\tilde{g} = \nabla f(\tilde{x})$. Set $x_0 = x^{s-1}$, $\bar{x}_0 = \tilde{x}$ and $T = T_s$. 4: for t = 1, 2, ..., T do 5: Pick $i_t \in \{1, \ldots, m\}$ randomly according to Q. 6: $\underline{x_t} = \left[(1 + \mu \gamma_s) (1 - \alpha_s - p_s) \bar{x}_{t-1} + \alpha_s x_{t-1} + (1 + \mu \gamma_s) p_s \tilde{x} \right] / \left[1 + \mu \gamma_s (1 - \alpha_s) \right]$ 7: 8: $G_t = (\nabla f_{i_t}(\underline{x}_t) - \nabla f_{i_t}(\underline{x}))/(q_{i_t}m) + \underline{g}$ $\overline{x_t = \arg\min_{x \in X} \{\gamma_s [\langle G_t, x \rangle + h(x) + \mu V(\underline{x}_t, x)] + V(x_{t-1}, x)\}}$ 9: $\bar{x}_t = (1 - \alpha_s - p_s)\bar{x}_{t-1} + \alpha_s x_t + p_s \bar{x}.$ 10: end for 11: Set $x^s = x_T$ and $\tilde{x}^s = \sum_{t=1}^T (\theta_t \bar{x}_t) / \sum_{t=1}^T \theta_t$. 12: 13: end for

- Similar to SVRG algorithmic scheme
- Adopt AC-SA[GL201] in the inner loop
- Allows general distance via proxfunction V
- When $\alpha_s = 1, p_s = 0$, Varag reduces to non-accelerated method, and achieves $O\{(m + L/\mu)\log(1/\epsilon)\}$ as SVRG.

Theorem 1 (Smooth finite-sum optimization) Suppose that the probabilities q_i 's are set to $L_i / \sum_{i=1}^m L_i$ for i = 1, ..., m, and weights $\{\theta_t\}$ are set as

$$\theta_t = \begin{cases} \frac{\gamma_s}{\alpha_s} (\alpha_s + p_s) & 1 \le t \le T_s - 1\\ \frac{\gamma_s}{\alpha_s} & t = T_s. \end{cases}$$

Moreover, let us denote $s_0 := \lfloor \log m \rfloor + 1$ and set parameters $\{T_s\}, \{\gamma_s\}$ and $\{p_s\}$ as

$$T_s = \begin{cases} 2^{s-1}, & s \le s_0 \\ T_{s_0}, & s > s_0 \end{cases}, \ \gamma_s = \frac{1}{3L\alpha_s}, \ and \ p_s = \frac{1}{2}, \ with$$

$$\alpha_s = \begin{cases} \frac{1}{2}, & s \le s_0\\ \frac{2}{s - s_0 + 4}, & s > s_0 \end{cases}.$$
(2.4)

(2.2)

(2.3)

Then the total number of gradient evaluations of
$$f_i$$
 performed by
i.e., a point $\bar{x} \in X$ s.t. $\mathbb{E}[\psi(\bar{x}) - \psi^*] \leq \epsilon$, can be bounded by
 $\bar{N} := \begin{cases} \mathcal{O}\{m \log \frac{D_0}{\epsilon}\}, & m \geq D_0/\epsilon, \\ \mathcal{O}\{m \log m + \sqrt{\frac{mD_0}{\epsilon}}\}, & m < D_0/\epsilon, \end{cases}$
(2.5)

where D_0 is defined as

$$D_0 := 2[\psi(x^0) - \psi(x)] + 3LV(x^0, x)$$

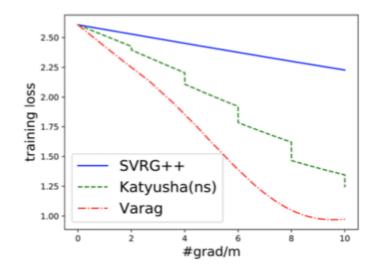
Varag solves smooth problem directly!

- Doubling epoch length of inner loop
- When the required accuracy
 e is low and/or the number of components *m* is large, Varag achieves a fast linear rate of convergence
- Otherwise, Varag achieves an optimal sublinear rate of convergence
- (2.5) O Varag is the first accelerated RIG in the literature to obtain such convergence results by directly solving smooth finite-sum optimization problems.

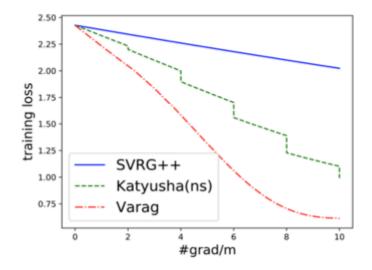
Smooth convex finite-sum optimization

One numerical example – unconstrained logistic models

$\min_{x \in \mathbb{R}^n} \{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) \} \text{ where } f_i(x) := \log(1 + \exp(-b_i a_i^T x)) \}$



Diabetes (m = 1151), unconstrained logistic



Breast Cancer Wisconsin (m = 683), unconstrained logistic

When $\mu pprox 0$ for strongly convex problems...

When the problem is almost not strongly convex, i.e., $\mu \approx 0$, $\sqrt{mL}/\mu \log(1/\epsilon)$ will be dominating and tend to ∞ as μ decreases.

Therefore, these complexity bounds are significantly worse than simply treating the problem as smooth convex problems.

SU HOU SUIONGIY I		
01	Algorithms	Deterministic smooth strongly convex
$\log(1/\epsilon)$ will ∞ as μ	RPDG[18]	$\mathcal{O}\left\{(m + \sqrt{\frac{mL}{\mu}})\log \frac{1}{\epsilon} ight\}$
	Catalyst[20]	$\mathcal{O}\left\{(m + \sqrt{\frac{mL}{\mu}})\log\frac{1}{\epsilon} ight\}^1$
y bounds are ply treating	Katyusha[1]	$\mathcal{O}\left\{(m + \sqrt{\frac{mL}{\mu}})\log\frac{1}{\epsilon}\right\}$
	Katyusha ^{ns} [1]	NA
vex problems.	RGEM[19]	$\mathcal{O}\left\{(m + \sqrt{\frac{mL}{\mu}})\log\frac{1}{\epsilon}\right\}$
$\bar{N} := \begin{cases} \mathcal{O}\left\{m\log\frac{D_0}{\epsilon}\right\}\\ \mathcal{O}\left\{m\log m + \frac{1}{2}\right\} \end{cases}$	$, \qquad m \ge D_0$	$\rho/\epsilon,$
$\int \mathcal{O}\left\{m\log m + \right.\right.$	$-\sqrt{\frac{mD_0}{\epsilon}} \Big\}, m < D_0$	$\rho/\epsilon,$

Theorem 2 (A unified result for convex finite-sum optimization) Suppose that the probabilities q_i 's are set to $L_i / \sum_{i=1}^m L_i$ for i = 1, ..., m. Moreover, let us denote $s_0 := \lfloor \log m \rfloor + 1$ and assume \bigcirc that the weights $\{\theta_t\}$ are set to (2.2) if $1 \le s \le s_0$ or $s_0 < s \le s_0 + \sqrt{\frac{12L}{m\mu}} - 4$, $m < \frac{3L}{4\mu}$. Otherwise, they are set to

$$\theta_t = \begin{cases} \Gamma_{t-1} - (1 - \alpha_s - p_s)\Gamma_t, & 1 \le t \le T_s - 1, \\ \Gamma_{t-1}, & t = T_s, \end{cases}$$

where $\Gamma_t = (1 + \mu \gamma_s)^t$. If the parameters $\{T_s\}$, $\{\gamma_s\}$ and $\{p_s\}$ set to (2.3) with

$$\alpha_s = \begin{cases} \frac{1}{2}, & s \le s_0, \\ \max\left\{\frac{2}{s - s_0 + 4}, \min\{\sqrt{\frac{m\mu}{3L}}, \frac{1}{2}\}\right\}, & s > s_0, \end{cases}$$

then the total number of gradient evaluations of f_i performed by Algorithm 1 to find a stochastic ϵ -solution of (1.1) can be bounded by

$$\bar{N} := \begin{cases} \mathcal{O}\left\{m\log\frac{D_0}{\epsilon}\right\}, & m \ge \frac{D_0}{\epsilon} \text{ or } m \ge \frac{3L}{4\mu}, \\ \mathcal{O}\left\{m\log m + \sqrt{\frac{mD_0}{\epsilon}}\right\}, & m < \frac{D_0}{\epsilon} \le \frac{3L}{4\mu}, \\ \mathcal{O}\left\{m\log m + \sqrt{\frac{mL}{\mu}}\log\frac{D_0/\epsilon}{3L/4\mu}\right\}, & m < \frac{3L}{4\mu} \le \frac{D_0}{\epsilon}. \end{cases}$$

where
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \mu V(x, y), \forall x, y \in X.$$

Varag is an unified optimal method!

(2.7)

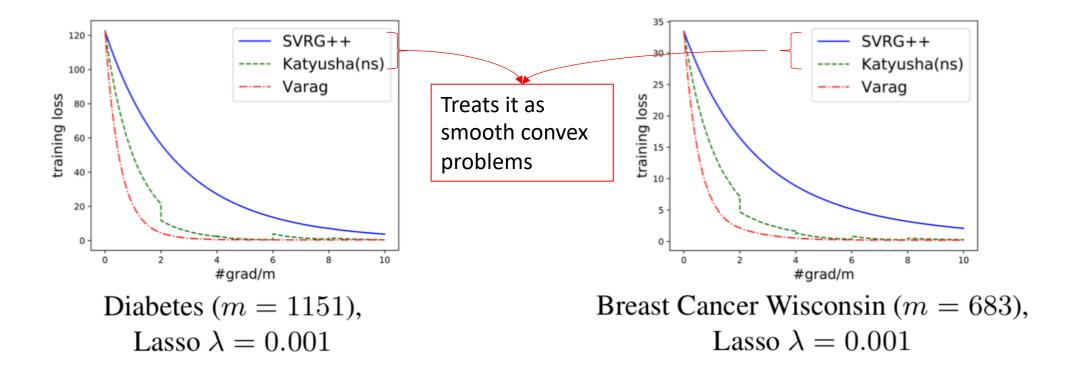
(2.8)

- When μ is large enough, Varag achieves the optimal linear rate of convergence
- When μ is relatively small, *Varag* treats the problem as a smooth convex problem.
- Varag does not require to know the target accuracy ϵ and the constant D_0 beforehand to obtain optimal convergent rates.
- (2.9) O The unified step-size policy adjusts itself to the value of the condition number
 - Varag does not assume the strong convexity comes from the regularizer!

Varag as an unified optimal method

One numerical example – Lasso regression models

 $\min_{x \in \mathbb{R}^n} \{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) + h(x) \} \text{ where } f_i(x) := \frac{1}{2} (a_i^T x - b_i)^2, h(x) := \lambda \|x\|_1.$



$$V(x, X^*) \le \frac{1}{\bar{\mu}}(\psi(x) - \psi^*), \ \forall x \in X,$$

Theorem 3 (Convex finite-sum optimization under error bound) Assi q_i 's are set to $L_i / \sum_{i=1}^m L_i$ for i = 1, ..., m, and θ_t are defined as (2) parameters $\{\gamma_s\}$, $\{p_s\}$ and $\{\alpha_s\}$ as in (2.3) and (2.4), $s = 4 + 4\sqrt{\frac{L}{\bar{\mu}m}}$,

Moreover, if we restart Varag every time it runs s iterations for $k = \log \frac{\psi}{1}$ number of gradient evaluations of f_i to find a stochastic ϵ -solution of (1. Application examples: Linear systems, quadratic programs, linear matrix inequalities and composite problems, etc.

$$\bar{N} := k(\sum_{s} (m+T_s)) = \mathcal{O}\left\{\left(m + \sqrt{\frac{mL}{\bar{\mu}}}\right)\log\frac{\psi(x^0) - \psi(x^*)}{\epsilon}\right\}.$$
(2.13)

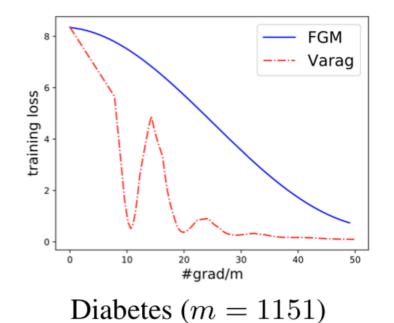
Varag is **the first randomized** method to establish the **accelerated linear rate of convergence** for solving the above problems!

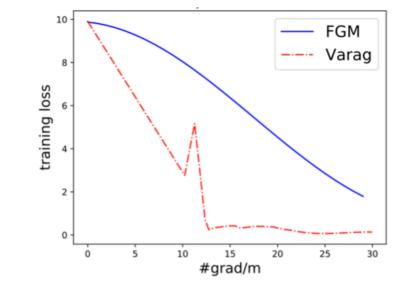
Generalization of Varag

Finite-sum under error bound condition

One numerical example – quadratic problems

$$\min_{x \in \mathbb{R}^n} \{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) \} \text{ where } f_i(x) := \frac{1}{2} x^T Q_i x + q_i^T x.$$





Parkinsons Telemonitoring (m = 5875)

Only noisy gradient information can be accessed via SFO

$$\mathbb{E}_{\xi_j}[G_i(x,\xi_j)] = \nabla f_i(x), \ i = 1, \dots, m, \\ \mathbb{E}_{\xi_j}[\|G_i(x,\xi_j) - \nabla f_i(x)\|_*^2] \le \sigma^2, \ i = 1, \dots, m.$$

Algorithm 2 Stochastic accelerated variance-reduced stochastic gradient descent (Stochastic Varag) This algorithm is the same as Algorithm 1 except that for given batch-size parameters B_s and b_s , Line 3 is replaced by $\tilde{x} = \tilde{x}^{s-1}$ and

$$\tilde{g} = \frac{1}{m} \sum_{i=1}^{m} \left\{ G_i(\tilde{x}) := \frac{1}{B_s} \sum_{j=1}^{B_s} G_i(\tilde{x}, \xi_j^s) \right\},$$
(2.16)

and Line 8 is replaced by

$$G_{t} = \frac{1}{q_{i_{t}}mb_{s}} \sum_{k=1}^{b_{s}} \left(G_{i_{t}}(\underline{x}_{t}, \xi_{k}^{s}) - G_{i_{t}}(\tilde{x}) \right) + \tilde{g}.$$
(2.17)

Generalization of Varag

Stochastic finite-sum

Theorem 4 (Stochastic smooth finite-sum optimization) Assume that θ_t are defined as in (2.2), $C := \sum_{i=1}^m \frac{1}{q_i m^2}$ and the probabilities q_i 's are set to $L_i / \sum_{i=1}^m L_i$ for i = 1, ..., m. Moreover, let us denote $s_0 := \lfloor \log m \rfloor + 1$ and set T_s , α_s , γ_s and p_s as in (2.3) and (2.4). Then the number of calls to the SFO oracle required by Algorithm 2 to find a stochastic ϵ -solution of (1.1) can be bounded by

$$N_{\rm SFO} = \sum_{s} (mB_s + T_s b_s) = \begin{cases} \mathcal{O} \left\{ \frac{mC\sigma^2}{L\epsilon} \right\}, & m \ge D_0/\epsilon, \\ \mathcal{O} \left\{ \frac{C\sigma^2 D_0}{L\epsilon^2} \right\}, & m < D_0/\epsilon, \end{cases}$$
(2.18)

where D_0 is given in (2.6).

Varag is **the first** to achieve the above complexity results for smooth convex problems!

- RGEM[LZ18] achieves nearly optimal rate $\tilde{O}\{\sigma^2/\mu^2\epsilon\}$ for expected distance between the output and the optimal solution
- Variant of SVRG[KM19] achieves $O\{m\log m + \frac{\sigma^2}{\epsilon}\}$ with some specific initial point.

Generalization of Varag

Stochastic finite-sum

Future works

• Extend Varag to solve nonconvex

finite-sum problems

• How to choose stepsize if L and μ are

hard to estimate?

Thank you!

References

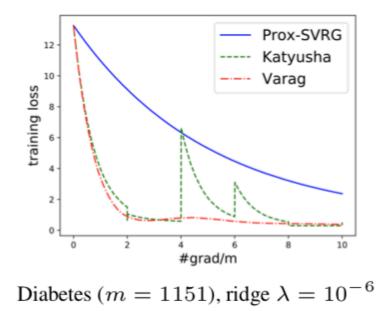
Varag: Lan, G., Li, Z., & Zhou, Y. (2019). *A unified variance-reduced accelerated gradient method for convex optimization*. *arXiv preprint arXiv:1905.12412*. Accepted by NeurIPS 2019.

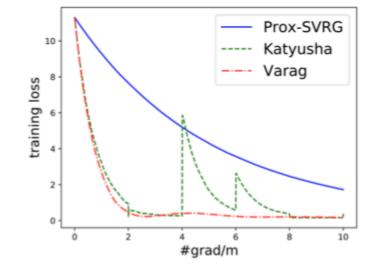
Other RIG methods:

- Johnson, R., & Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems (pp. 315-323).
- Xiao, L., & Zhang, T. (2014). A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4), 2057-2075.
- Defazio, A., Bach, F., & Lacoste-Julien, S. (2014). SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in neural information processing systems, 1646-1654.
- Nguyen, L. M., Liu, J., Scheinberg, K., & Takáč, M. (2017, August). SARAH: A novel method for machine learning problems using stochastic recursive gradient. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70* (pp. 2613-2621). JMLR. org.
- Allen-Zhu, Z., & Yuan, Y. (2016, June). Improved svrg for non-strongly-convex or sum-of-non-convex objectives. In International conference on machine learning (pp. 1080-1089).
- Lan, G., & Zhou, Y. (2018). An optimal randomized incremental gradient method. *Mathematical programming*, 171(1-2), 167-215.
- Allen-Zhu, Z. (2017). Katyusha: The first direct acceleration of stochastic gradient methods. The Journal of Machine Learning Research, 18(1), 8194-8244.
- Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. Advances in neural information processing systems, 3384-3392.
- Lan, G., & Zhou, Y. (2018). Random gradient extrapolation for distributed and stochastic optimization. *SIAM Journal on Optimization*, 28(4), 2753-2782.
- Kulunchakov, A., & Mairal, J. (2019). Estimate sequences for stochastic composite optimization: Variance reduction, acceleration, and robustness to noise. *arXiv preprint arXiv:1901.08788*.

One numerical example – ridge regression models

$$\min_{x \in \mathbb{R}^n} \{ \psi(x) := \frac{1}{m} \sum_{i=1}^m f_i(x) + h(x) \} \text{ where } f_i(x) := \frac{1}{2} (a_i^T x - b_i)^2, h(x) := \lambda \|x\|_2^2.$$





Breast-Cancer-Wisconsin (m = 683), ridge $\lambda = 10^{-6}$

Varag requires less CPU time per training epoch than Katyusha!