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Future works

• Convergence results
• Numerical experiments



Problem of interest: convex finite-sum 
optimization 

• Smooth and convex with 𝐿"-Lipschitz continuous gradient over 𝑋
• Simple but possibly nonsmooth over 𝑋

Let 𝑓(𝑥) ≔ )
*
∑",)* 𝑓"(𝑥), we assume that 𝑓 is possibly strongly convex with modulus 𝜇 ≥ 0. 



Problem of interest: convex finite-sum 
optimization 

• Wide range of applications in machine learning, statistical inference and image processing.
• Take 𝑙1-regularized logistic regression problem as an example

• 𝑓" is the loss function based on training data 𝑎3", 𝑏3" 3
67, or the loss function associated 

with agent 𝑖 for a distributed optimization problem. 
• Minimization of the empirical risk

• 𝑓" given in the form of expectation where 𝜉" models the underlying distribution for 
training dataset 𝑖 (of agent 𝑖 for a distributed problem)

• Minimization of  the generalized risk



Randomized incremental 
gradient (RIG) methods

• Derived from SGD and the idea of reducing variance 
of the gradient estimator

• SVRG[JZ13] exhibits linear rate of convergence 
𝒪{ 𝑚 + ⁄? @ log( ⁄) D) } , same result for Prox-
SVRG[XZ14], SAGA[DBL14] and SARAH[NLST17] for 
strongly convex problems
• Update exact gradient F𝑔 at the outer loop and a 

gradient of the component function in the inner loop
• Variance of 𝐺I vanishes as algorithm proceeds

• SVRG++[AY16] obtains 𝒪{𝑚log ⁄) D + ⁄? D } for 
smooth convex problems

They are NOT optimal RIG methods!



Optimal RIG methods

Accelerated RIG methods: Catalyst[LMH15], RPGD[LZ17], 
RGEM[LZ18], and Katyusha[A17], etc.

• All exhibit 𝒪{ 𝑚 + √ ⁄*? @ log( ⁄) D) } for strongly 
convex problems

• Except Katyushans[A17], none of these methods can 
be used directly to solve smooth convex problems. 
They required perturbation technique. Katyushans is 
not advantageous over accelerated gradient 
method.

• Except RGEM[LZ18], none of the optimal methods 
can solve stochastic finite-sum problems

• They are assume the strongly convexity comes from 
regularizer term ℎ(𝑥)

• None of them are unified methods that can be 
adjust to ill-conditioned problem, e.g., 𝜇 is very 
small.



The Varag algorithm

• Similar to SVRG algorithmic 
scheme

• Adopt AC-SA[GL201] in the 
inner loop

• Allows general distance via prox-
function 𝑉

• When 𝛼N = 1, 𝑝N = 0, Varag 
reduces to non-accelerated 
method, and achieves 
𝒪{ 𝑚 + ⁄? @ log( ⁄) D) } as SVRG.



Smooth convex finite-sum optimization

o Varag solves smooth problem directly!
• Doubling epoch length of inner 

loop
• When the required accuracy 𝜖 is 

low and/or the number of 
components 𝑚 is large, Varag 
achieves a fast linear rate of 
convergence

• Otherwise, Varag achieves an 
optimal sublinear rate of 
convergence

o Varag is the first accelerated RIG in the 
literature to obtain such convergence 
results by directly solving smooth finite-
sum optimization problems.



One numerical example – unconstrained logistic models 



When 𝜇 ≈ 0 for strongly convex problems…

When the problem is almost not strongly 
convex, i.e., 𝜇 ≈ 0, √ ⁄*? @ log( ⁄) D) will 
be dominating and tend to ∞ as 𝜇
decreases. 

Therefore, these complexity bounds are 
significantly worse than simply treating 
the problem as smooth convex problems.



Varag as an unified optimal method

o Varag is an unified optimal method!
• When 𝜇 is large enough, Varag

achieves the optimal linear rate of 
convergence

• When 𝜇 is relatively small, Varag 
treats the problem as a smooth 
convex problem.

o Varag does not require to know the 
target accuracy 𝜖 and the constant 𝐷V
beforehand to obtain optimal 
convergent rates.

o The unified step-size policy adjusts 
itself to the value of the condition 
number

o Varag does not assume the strong 
convexity comes from the regularizer!



One numerical example – Lasso regression models 

Treats it as 
smooth convex 
problems



Generalization of Varag Finite-sum under 
error bound condition

Application examples:
Linear systems, 

quadratic programs, 
linear matrix 

inequalities and 
composite problems, 

etc. 

Varag is the first randomized method to establish the accelerated linear rate of 
convergence for solving the above problems!



One numerical example – quadratic problems 



Generalization of Varag Stochastic finite-sum

Only noisy gradient 
information can be 
accessed via SFO



Generalization of Varag Stochastic finite-sum

Varag is the first to achieve the above complexity results for smooth convex problems!
• RGEM[LZ18] achieves nearly optimal rate W𝒪{ XYZ

@ZD} for expected distance 
between the output and the optimal solution

• Variant of SVRG[KM19] achieves 𝒪{𝑚log𝑚 + ⁄Y^1 D} with some specific initial 
point.



Future works

• Extend Varag to solve nonconvex 

finite-sum problems

• How to choose stepsize if 𝐿 and 𝜇 are 

hard to estimate?



Thank you!
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One numerical example – ridge regression models 

Varag requires less CPU time per training epoch than Katyusha!


