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Problem of interest: convex finite-sum n
optimization ¥
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* Smooth and convex with L;-Lipschitz continuous gradient over X

e Simple but possibly nonsmooth over X

Let f(x) == % M fi(x), we assume that f is possibly strongly convex with modulus u > 0.



Problem of interest: convex finite-sum n
optimization ¥

" = min {Y(z) = 23" fi(z) + h(z)}.

reX
* Wide range of applications in machine learning, statistical inference and image processing.
* Take [,-regularized logistic regression problem as an example

filx) =l;(x) := ]\1, ~, log(1 + exp(— bi.ai.T:(;)), i=1,....,m, w(x)= R(x):= %HT”%
* f;istheloss functlon based on training data { a;, ]} or the loss function associated

with agent i for a distributed optimization problem.
* Minimization of the empirical risk

fi(x) = l;(x) := B¢, [log(1 + exp(—=&lz))], i=1,...,m,

* f; given in the form of expectation where &; models the underlying distribution for
training dataset i (of agent i for a distributed problem)
* Minimization of the generalized risk



Randomized incremental
gradient (RIG) methods

Derived from SGD and the idea of reducing variance
of the gradient estimator

SVRG[JZ13] exhibits linear rate of convergence
O{(m + L/ ,)log(Y/e) }, same result for Prox-
SVRG[XZ14], SAGA[DBL14] and SARAH[NLST17] for
strongly convex problems

* Update exact gradient g at the outer loop and a
gradient of the component function in the inner loop

* \Variance of G; vanishes as algorithm proceeds

SVRG++[AY16] obtains O{mlog(Y/¢) + /¢ } for
smooth convex problems

They are NOT optimal RIG methods!




Optimal RIG methods

Accelerated RIG methods: Catalyst[LMH15], RPGD[LZ17],

RGEM([LZ18], and Katyusha[A17], etc. * i (z):= LY fi(z) + h(x)}.

* Except Katyusha[A17], none of these methods can
be used directly to solve smooth convex problems.
They . Katyusha"s is

Table 1: Summary of the recent results on accelerated RIG methods

ceizis
* Except RGEM|LZ18]|,

Katyusha™[1]
|

-
, €.8., L is very

Algorithms Deterministic smooth strongly convex | Deterministic smooth convex

small.



The Varag algorithm

Algorithm 1 The variance-reduced accelerated gradient (Varag ) method * Similar to SVRG a Igorithmic
Input: 2° € X, {T.}, {7s},{as}, {ps}, {0:}, and a probability distribution Q = {q1,...,qmn} on scheme
1,... . .
Lo m; » Adopt AC-SA[GL201] in the
1: Setx Tv.
2: fors=1,2,...do inner |Oop
3 Seti=7*"'andjg = Vf(2). , ,
4. Setxg=12""1,7 =zand T = T.. * Allows general distance via prox-
5: ffort=1,2,....T do :
6: Pick i; € {1.....m} randomly according to Q). function V
7: 2, = [(14 py) (1 — as — p)Ty1 + a1 + (1 + pys)psz) /(1 + pys(1 — o)) * Whena, =1,p;, =0, Varag
8: Gy = (V/i (2,) — V]i,(Z))/(qi, ) +9 d | d
9: T = argmin,c x {7 NGz FIEFuV (z,, )] + V(zi_1,2)} reduces to non-accelerate
10: | 7= (1 = 0 = ps)Te1 + QT + pot. method, and achieves
11: lend for . — ;L
12 Seta’ = ar and 3 = T, (05T O{(m + &/ )log(*/¢) } as SVRG.
13: end for




Theorem 1 (Smooth finite-sum optimization) Suppose that the probabilities ¢;’s are set to L;/ " | L; for i =

Lywm, and weights (.} are set as o Varag solves smooth problem directly!
p {%(aﬁps) 1<t<T,—1 02 * Doubling epoch length of inner
t = ° '
o t=T.. loop
Moreover, let us denote so :=_|logm| + 1 and set parameters {Ts}, {vs} and {ps} as * When the required accuracy € is
p-l < low and/or the number of
. ) = 20 1 1 . .
Lo = {T > |0 FLasr AP =g, With (23) components m is large, Varag
achieves a fast linear rate of
L s < s convergence
g = 9 : (2.4) . .
2, s> 80 * Otherwise, Varag achieves an
Then the total number of gradient evaluations of f; performed =y Al~rwithes 1 en Gy 8 - ey hooeie - -loetee £ A0 JA Opt|ma| sublinear rate of
i.e., apoint T € X s.t. E[Y)(z) —¢*] <€ can be bounded by Katyusha™[1] O {L\/lg + %} convergence
) O{mlog&l}, m > Dg/e, - . .
N = 2.5
O{mlogm-{— m} m < Doje. 25 © \(arag is the first gccelerated RIG in the
literature to obtain such convergence
where Dy is defined as . . results by directly solving smooth finite-
Dy :=2[¢(2”) — Y(x)] + 3LV (2", ). (2.6)

sum optimization problems.

Smooth convex finite-sum optimization




One numerical example — unconstrained logistic models

1‘1‘1%1 {¢(z) := =37 fi(x)} where f;(z) := log(1 + exp(—b;al z))}
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When u = 0 for strongly convex problems...

When the problem is almost not strongly
convex, i.e., u = 0, V™L/, log(Y/e) will
be dominating and tend to o0 as u
decreases.

Therefore, these complexity bounds are
significantly worse than simply treating
the problem as smooth convex problems.

Algorithms | Deterministic smooth strongly convex

RPDG|18] o {(m +W) log §\}\
Catalyst[20] O {(m ﬁ) log %}'
Katyusha[1] O {(m + "LL ) log %}
Katyusha™[1] NA

RGEM[19] O {(m +\\/";f ) log f)/




Theorem 2 (A unified result for convex finite-sum optimization) Suppose that the probabilities
qi'saresetto L;/Y " Lifori=1,..., m. Moreover, let us denote sy := |logm/| + 1 and assume

) )

that the weights {0, } are set to (2.2) if 1 < s < sgorsy < s < o+ 2L 4 m < %. Otherwise,

mp
they are set to

0, = {E:_ (1 —as —ps)Tt, tlf;’S =1, (2.7)
where Ty = (1 + prys)*. If the parameters {T}, {vs} and {ps} set to (2.3) with
%, s < So,
Qg = {max { 8_6_20+4,min{\/%, %}} . 8> Sp, (2.8)

then the total number of gradient evaluations of f; performed by Algorithm I to find a stochastic
e-solution of (1.1) can be bounded by

r('){mlog%}, m > %‘lormz %}
N o= (’){mlogm+ M‘l} m < o < %, (2.9)
m Dg/e :
\O{mlogm-l— %log%}, m<3—ﬁg%ﬂ.-

Varag as an unified optimal method

o Varag is an unified optimal method!
 When u is large enough, Varag
achieves the optimal linear rate of
convergence
* When u is relatively small, Varag
treats the problem as a smooth
convex problem.

o Varag does not require to know the
target accuracy € and the constant D,
beforehand to obtain optimal
convergent rates.

o The unified step-size policy adjusts
itself to the value of the condition
number

o Varag does not assume the strong
convexity comes from the regularizer!




One numerical example — Lasso regression models

min {¢(z) := =3 fi(x) + h(z)} where fi(z) := §(alz — b;)?, h(z) := X||z|;.
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Application examples:
Linear systems,
guadratic programs,

Ve, X*) < =(¥(z) —¢7), Vo € X,

=i

Theorem 3 (Convex finite-sum optlmlzatlon under error bound) Ass|
.m, and 0, are defined as ( linear matrix

qi's are set to L;/>""  L; for i = 1,.
parameters {7s}, {ps} and {as} asin _) and 24) s =444 / inequalities and
composite problems,

Moreover; if we|restart larag every time it runs s iterations for k = log
number of gradient evaluations of f; to find a stochastic e-solution of (1.|

N:=k(d (m+1T,)=0 {(m + mTL) log zp(aso);w(a:*)} . (2.13)

Varag is the first randomized method to establish the accelerated linear rate of
convergence for solving the above problems!

Generalization of Varag Finite-sum under

error bound condition

Fad



One numerical example — quadratic problems

min {o(z) := -370, fi(x)} where fi(z) i= 2" Qi + g/ @
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OEIy noisy gradient

Efj [Gz(x7€])] — sz(x), L= ]-7 ceey TN,

information can be ) -
Ee,[|Gi(2,6)) — VAi(@)P) < 0%, i=1,...,m.

accessed via SFO

Algorithm 2 Stochastic accelerated variance-reduced stochastic gradient descent (Stochastic Varag )

This algorithm is the same as Algorithm 1 except that for given batch-size parameters By and by,
Line 3 is replaced by # = #°~! and

§= =3 {Gi(@) = X7 Gia€) ) (2.16)

and Line 8|is replaced by
Gy = ng;l(ait(gt,gg) ~ G, (%)) + 3. (2.17)

Generalization of Varag Stochastic finite-sum

Fad




Theorem 4 (Stochastic smooth finite-sum optimization) Assume that 0, are defined as in (2.2), C == > ", qi}nz,

and the probabilities q;’s are set to L;/> ;" | L; fori = 1,...,m. Moreover, let us denote si := |logm| + 1 and set
Ts, aus, vs and ps as in (2.3) and (2.4). Then the number of calls to the SFO oracle required by Algorithm 2 to find a
stochastic e-solution of (1.1) can be bounded by

(’){mgf}, m > Do/e,

0%}, m < Do/e (218)

Le?

NSFO — Zs(mBs + sts) — {

where Dy is given in (2.6).

Varag is the first to achieve the above complexity results for smooth convex problems!
* RGEM([LZ18] achieves nearly optimal rate (5{“2/M26} for expected distance

between the output and the optimal solution
e Variant of SVRG[KM19] achieves O{mlogm + "2/} with some specific initial
point.

Generalization of Varag Stochastic finite-sum

Fad




* Extend Varag to solve nonconvex

finite-sum problems

* How to choose stepsize if L and u are

hard to estimate?
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One numerical example —ridge regression models

min {¢(z) := 23" fi(z) + h(z)} where f;(z) := %(aTa? — b;)%, h(z) = N|z||3.
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Varag requires less CPU time per training epoch than Katyusha!



