Tsinghua University

SSRGD：Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points

King Abdullah University of Science and Technology

Zhize Li

Tsinghua University，and KAUST

Problem

We consider two types of nonconvex problems． 1）The finite－sum problem：

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} f(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x), \tag{1}
\end{equation*}
$$

where $f(x)$ and all individual $f_{i}(x)$ are possibly nonconvex．
2）The online（expectation）problem：

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{d}} f(x):=\mathbb{E}_{\zeta \sim \mathcal{D}}[F(x, \zeta)] \tag{2}
\end{equation*}
$$

where $f(x)$ and $F(x, \zeta)$ are possibly nonconvex．

DEFINITION

Assumption 1 （Gradient Lipschitz）
$\left\|\nabla f_{i}\left(x_{1}\right)-\nabla f_{i}\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \quad \forall x_{1}, x_{2}$ Assumption 2 （Hessian Lipschitz） $\left\|\nabla^{2} f_{i}\left(x_{1}\right)-\nabla^{2} f_{i}\left(x_{2}\right)\right\| \leq \rho\left\|x_{1}-x_{2}\right\|, \quad \forall x_{1}, x_{2}$.

Convergence guarantee：

－ϵ－first－order stationary point：$\|\nabla f(x)\| \leq \epsilon$ ． －(ϵ, δ)－second－order stationary point：
$\|\nabla f(x)\| \leq \epsilon$ and $\lambda_{\min }\left(\nabla^{2} f(x)\right) \geq-\delta$ ．
Note that $\nabla f(x)=0$ and $\nabla^{2} f(x) \succ 0 \Rightarrow x$ is a local minimum．

CONVERGENCE RESULT

Algorithm	Stochastic gradient complexity	Convergence guarantee	Negative－curvature search subroutine
GD［Nesterov，2004］	$O\left(\frac{n}{\epsilon^{2}}\right)$	ϵ－first－order	No
SVRG［Reddi et al．，2016］， ［Allen－Zhu and Hazan，2016］； SCSG［Lei et al．，2017］； SVRG＋［Li and Li，2018］	$O\left(n+\frac{n^{2 / 3}}{\epsilon^{2}}\right)$	ϵ－first－order	No
SNVRG［Zhou et al．，2018b］； SPIDER［Fang et al．，2018］； SpiderBoost［Wang et al．，2018］； SARAH［Pham et al．，2019］	$O\left(n+\frac{n^{1 / 2}}{\epsilon^{2}}\right)$	ϵ－first－order	No
SSRGD（this paper）	$O\left(n+\frac{n^{1 / 2}}{\epsilon^{2}}\right)$	ϵ－first－order	No
PGD［Jin et al．，2017］	$\widetilde{O}\left(\frac{n}{\epsilon^{2}}+\frac{n}{\delta^{4}}\right)$	(ϵ, δ)－second－order	No
Neon2＋FastCubic／CDHS ［Agarwal et al．，2016，Carmon et al．，2016］	$\widetilde{O}\left(\frac{n}{\epsilon^{1.5}}+\frac{n}{\delta^{3}}+\frac{n^{3 / 4}}{\epsilon^{1.75}}+\frac{n^{3 / 4}}{\delta^{3.5}}\right)$	(ϵ, δ)－second－order	Needed
Neon2＋SVRG［Allen－Zhu and Li，2018］	$\widetilde{O}\left(\frac{n^{2 / 3}}{\epsilon^{2}}+\frac{n}{\delta^{3}}+\frac{n^{3 / 4}}{\delta^{3.5}}\right)$	(ϵ, δ)－second－order	Needed
Stabilized SVRG［Ge et al．，2019］	$\widetilde{O}\left(\frac{n^{2 / 3}}{\epsilon^{2}}+\frac{n}{\delta^{3}}+\frac{n^{2 / 3}}{\delta^{4}}\right)$	(ϵ, δ)－second－order	No
SNVRG ${ }^{+}+$Neon2［Zhou et al．，2018a］	$\widetilde{O}\left(\frac{n^{1 / 2}}{\epsilon^{2}}+\frac{n}{\delta^{3}}+\frac{n^{3 / 4}}{\delta^{3.5}}\right)$	(ϵ, δ)－second－order	Needed
SPIDER－SFO ${ }^{+}$（＋Neon2）［Fang et al．，2018］	$\widetilde{O}\left(\frac{n^{1 / 2}}{\epsilon^{2}}+\frac{n^{1 / 2}}{\delta \delta^{2}}+\frac{1}{\delta^{3}}+\frac{1}{\delta^{5}}\right)$	(ϵ, δ)－second－order	Needed
SSRGD（this paper）	$\widetilde{O}\left(\frac{n^{1 / 2}}{\epsilon^{2}}+\frac{n^{1 / 2}}{\delta^{4}}+\frac{n}{\delta^{3}}\right)$	(ϵ, δ)－second－order	No

－We improve the result of Stabilized SVRG［Ge et al．，2019］to almost optimal，i．e．，from $n^{2 / 3} / \epsilon^{2}$ to $n^{1 / 2} / \epsilon^{2}$ since［Fang et al．，2018］gave a lower bound $\Omega\left(n^{1 / 2} / \epsilon^{2}\right)$ for finding even just an ϵ－first－order stationary point．Also，our SSRGD is better than SPIDER－SFO ${ }^{+}$if δ is very small（e．g．，$\delta \leq 1 / \sqrt{n}$ ）．
－Note that the other two $n^{1 / 2}$ algorithms（SNVRG ${ }^{+}$and SPIDER－SFO ${ }^{+}$）need the negative curvature search subroutine（e．g．，Neon／Neon2）for escaping the saddle points while our SSRGD only needs to add random perturbations
－Besides，we also prove the convergence results for nonconvex online（expectation）problem（2）

REFERENCES

Rong Ge，Zhize Li，Weiyao Wang，and Xiang Wang．Stabilized SVRG：Simple Variance Reduction for Nonconvex Optimization．In COLT， 2019.
Lam M．Nguyen，Jie Liu，Katya Scheinberg，and Martin Takáč．SARAH：A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient．In ICML， 2017.

Algorithm

Algorithm 1：Simple Stochastic Recursive Gradient Descent（SSRGD）

1 input：initial point x_{0} ，epoch length m ，minibatch size b ，step size η ，perturbation radius r ， threshold gradient $g_{\text {thres }}$ ，threshold function value $f_{\text {thres }}$ ，super epoch length $t_{\text {thres }}$ ．
2 super＿epoch $\leftarrow 0$
3 for $s=0,1,2, \ldots$ do
if super＿epoch $=0$ and $\left\|\nabla f\left(x_{s m}\right)\right\| \leq g_{\text {thres }}$ then
$\widetilde{x} \leftarrow x_{s m}, t_{\text {init }} \leftarrow$ sm，super＿epoch $\leftarrow 1$
$x_{s m} \leftarrow \widetilde{x}+\xi$ ，where ξ uniformly $\sim \mathbb{B}_{0}(r)$／／we use super epoch since we do not want to add the perturbation too often near a saddle point
$v_{s m} \leftarrow \nabla f\left(x_{s m}\right) \quad / /$ compute full gradient every m steps

for $k=1,2, \ldots, m$ do

$t \leftarrow s m+k$
$x_{t} \leftarrow x_{t-1}-\eta v_{t-1}$
$v_{t} \leftarrow \frac{1}{b} \sum_{i \in I_{b}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}\left(x_{t-1}\right)\right)+v_{t-1} \quad / / I_{b}$ are i．i．d．samples with $\left|I_{b}\right|=b$
if super＿epoch $=1$ and $\left(f(\widetilde{x})-f\left(x_{t}\right) \geq f_{\text {thres }}\right.$ or $\left.t-t_{\text {init }} \geq t_{\text {thres }}\right)$ then
super＿epoch $\leftarrow 0$
$x_{(s+1) m} \leftarrow x_{t}$
Parameters：$m=\sqrt{n}, b=\sqrt{n}, \eta=\widetilde{O}\left(\frac{1}{L}\right), r=\widetilde{O}\left(\min \left(\frac{\delta^{3}}{\rho^{2} \epsilon}, \frac{\delta^{3 / 2}}{\rho \sqrt{L}}\right)\right), g_{\text {thres }}=\epsilon, f_{\text {thres }}=\widetilde{O}\left(\frac{\delta^{3}}{\rho^{2}}\right), t_{\text {thres }}=\widetilde{O}\left(\frac{1}{\eta \delta}\right)$

Proof Overview

－1．Large gradients：$\|\nabla f(x)\|^{2}>g_{\text {thres }}=\epsilon$
Key relation between $f\left(x_{t}\right)$ and $f\left(x_{t-1}\right)$ ，where $x_{t}=x_{t-1}-\eta v_{t-1}$ ．

$$
\begin{equation*}
f\left(x_{t}\right) \leq f\left(x_{t-1}\right)-\frac{\eta}{2}\left\|\nabla f\left(x_{t-1}\right)\right\|^{2}-\left(\frac{1}{2 \eta}-\frac{L}{2}\right)\left\|x_{t}-x_{t-1}\right\|^{2}+\frac{\eta}{2}\left\|\nabla f\left(x_{t-1}\right)-v_{t-1}\right\|^{2} . \tag{3}
\end{equation*}
$$

Observ．：cancel the last two terms \Rightarrow get an ϵ－first－order stationary point $(\|\nabla f(x)\| \leq \epsilon)$ in $\frac{2\left(f\left(x_{0}\right)-f^{*}\right)}{n \tau^{2}}$ steps． \triangleright First consider the gradient estimator v_{t} in SVRG papers（convergence result $O\left(n^{2} / 3 / \epsilon^{2}\right)$ ）：
$v_{t} \leftarrow \frac{1}{b} \sum_{i \in I_{b}}\left(\nabla f_{i}\left(x_{t}\right)-\nabla f_{i}(\widetilde{x})\right)+\nabla f(\widetilde{x}) \quad$（reuse the fixed snapshot full gradient $\nabla f(\widetilde{x})$ ）．
Bound the third term（variance）： $\mathbb{E}\left[\left\|\nabla f\left(x_{t-1}\right)-v_{t-1}\right\|^{2}\right] \leq \frac{L^{2}}{b} \mathbb{E}\left[\left\|x_{t-1}-\widetilde{x}\right\|^{2}\right]$ ．
Connect with the second term by using Young＇s inequality：$-\left\|x_{t}-x_{t-1}\right\|^{2} \leq \frac{1}{\alpha}\left\|x_{t-1}-\widetilde{x}\right\|^{2}-\frac{1}{1+\alpha}\left\|x_{t}-\widetilde{x}\right\|^{2}$ ． Sum up（3）for each epoch s（ m steps）to cancel the last two terms：
$\mathbb{E}\left[f\left(x_{(s+1) m}\right)\right] \leq \mathbb{E}\left[f\left(x_{s m}\right)\right]-\frac{\eta}{2} \sum_{j=s m+1}^{s m+m} \mathbb{E}\left[\left\|\nabla f\left(x_{j-1}\right)\right\|^{2}\right] \quad$（need $b \geq m^{2}$ due to Young＇s inequality）． Thus the convergence result is $T\left(b+\frac{n}{m}\right)=\frac{1}{\epsilon^{2}}\left(b+\frac{n}{m}\right)=\frac{n^{2 / 3}}{\epsilon^{2}}$ by choosing $b=m^{2}=n^{2 / 3}$ due to $b \geq m^{2}$ ． $>$ Now consider the recursive gradient estimator（originally introduced by［Nguyen et al．2017］）in Algo 1： Only need to bound the third term： $\mathbb{E}\left[\left\|\nabla f\left(x_{t-1}\right)-v_{t-1}\right\|^{2}\right] \leq \frac{L^{2}}{b} \sum_{j=s m+1}^{t-1} \mathbb{E}\left[\left\|x_{j}-x_{j-1}\right\|^{2}\right]$ ． Already connect with the second term，and sum up（3）for each epoch to cancel the last two terms． Thus the convergence result is $T\left(b+\frac{n}{m}\right)=\frac{1}{\epsilon^{2}}\left(b+\frac{n}{m}\right)=\frac{n^{1 / 2}}{\epsilon^{2}}$ by choosing $b=m=n^{1 / 2}$ ．
－2．Around saddle points：$\|\nabla f(\widetilde{x})\|^{2} \leq \epsilon$ and $\lambda_{\min }\left(\nabla^{2} f(\widetilde{x})\right) \leq-\delta$
i）Localization：$\forall t,\left\|x_{t}-x_{0}\right\| \leq \sqrt{t}\left(f\left(x_{0}\right)-f\left(x_{t}\right)\right)$ ．If function value does not decrease so much， then all iteration points are not far from the start point．
ii）Small stuck region in the random perturbation ball：$\exists t \leq t_{\text {thres }},\left\|x_{t}-x_{0}\right\| \geq \Omega(\delta)$ ．After the perturbation $x_{0}=\widetilde{x}+\xi, x_{0}$ will escape this saddle point in a super epoch，i．e．，within $t_{\text {thres }}$ steps．

