

(2)

PROBLEM

We consider two types of **nonconvex** problems. 1) The **finite-sum** problem:

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x),$$
(1)

where f(x) and all individual $f_i(x)$ are possibly nonconvex.

2) The **online (expectation)** problem:

$$\min_{x \in \mathbb{R}^d} f(x) := \mathbb{E}_{\zeta \sim \mathcal{D}}[F(x,\zeta)],$$

where f(x) and $F(x, \zeta)$ are possibly nonconvex.

CONVERGENCE RESULT

Table 1: Stochastic gradient complexity of optimization algorithms for nonconvex finite-sum problem (1)			
Algorithm	Stochastic gradient	Convergence	Negative-curvature
	complexity	guarantee	search subroutine
GD [Nesterov, 2004]	$O(\frac{n}{\epsilon^2})$	ϵ -first-order	No
SVRG [Reddi et al., 2016],	$O(n + \frac{n^{2/3}}{\epsilon^2})$	ϵ -first-order	No
[Allen-Zhu and Hazan, 2016];			
SCSG [Lei et al., 2017];			
SVRG+ [Li and Li, 2018]			
SNVRG [Zhou et al., 2018b];	$O(n + \frac{n^{1/2}}{\epsilon^2})$	ϵ -first-order	No
SPIDER [Fang et al., 2018];			
SpiderBoost [Wang et al., 2018];			
SARAH [Pham et al., 2019]			
SSRGD (this paper)	$O(n + \frac{n^{1/2}}{\epsilon^2})$	ϵ -first-order	No
PGD [Jin et al., 2017]	$\widetilde{O}(\frac{n}{\epsilon^2} + \frac{n}{\delta^4})$	(ϵ, δ) -second-order	No
Neon2+FastCubic/CDHS	$\widetilde{O}(\frac{n}{\epsilon^{1.5}} + \frac{n}{\delta^3} + \frac{n^{3/4}}{\epsilon^{1.75}} + \frac{n^{3/4}}{\delta^{3.5}})$	(ϵ, δ) -second-order	Needed
[Agarwal et al., 2016, Carmon et al., 2016]			
Neon2+SVRG [Allen-Zhu and Li, 2018]	$\widetilde{O}\left(\frac{n^{2/3}}{\epsilon^2} + \frac{n}{\delta^3} + \frac{n^{3/4}}{\delta^{3.5}}\right)$	(ϵ, δ) -second-order	Needed
Stabilized SVRG [Ge et al., 2019]	$\widetilde{O}\left(\frac{n^{2/3}}{\epsilon^2} + \frac{n}{\delta^3} + \frac{n^{2/3}}{\delta^4}\right)$	(ϵ, δ) -second-order	No
SNVRG ⁺ +Neon2 [Zhou et al., 2018a]	$\widetilde{O}\left(\frac{n^{1/2}}{\epsilon^2} + \frac{n}{\delta^3} + \frac{n^{3/4}}{\delta^{3.5}}\right)$	(ϵ, δ) -second-order	Needed
SPIDER-SFO ⁺ (+Neon2) [Fang et al., 2018]	$\widetilde{O}\left(\frac{n^{1/2}}{\epsilon^2} + \frac{n^{1/2}}{\epsilon\delta^2} + \frac{1}{\epsilon\delta^3} + \frac{1}{\delta^5}\right)$	(ϵ, δ) -second-order	Needed
SSRGD (this paper)	$\widetilde{O}(\frac{n^{1/2}}{\epsilon^2} + \frac{n^{1/2}}{\delta^4} + \frac{n}{\delta^3})$	(ϵ, δ) -second-order	No

• We improve the result of Stabilized SVRG [Ge et al., 2019] to almost optimal, i.e., from $n^{2/3}/\epsilon^2$ to $n^{1/2}/\epsilon^2$ since [Fang et al., 2018] gave a lower bound $\Omega(n^{1/2}/\epsilon^2)$ for finding even just an ϵ -first-order stationary point. Also, our SSRGD is better than SPIDER-SFO⁺ if δ is very small (e.g., $\delta \leq 1/\sqrt{n}$). • Note that the other two $n^{1/2}$ algorithms (SNVRG⁺ and SPIDER-SFO⁺) need the negative curvature search subroutine (e.g., Neon/Neon2) for escaping the saddle points while our SSRGD only needs to add random perturbations.

• Besides, we also prove the convergence results for nonconvex **online** (expectation) problem (2).

REFERENCES

Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized SVRG: Simple Variance Reduction for Nonconvex Optimization. In COLT, 2019. Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient. In ICML, 2017.

SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points

Zhize Li

Tsinghua University, and KAUST

DEFINITION

Assumption 1 (Gradient Lipschitz)			
$\ \nabla f_i(x_1) - \nabla f_i(x_2)\ \le L \ x_1 - x_2\ , \forall x_1, x_2.$			
Assumption 2 (Hessian Lipschitz)			
$\ \nabla^2 f_i(x_1) - \nabla^2 f_i(x_2)\ \le \rho \ x_1 - x_2\ , \forall x_1, x_2.$			
Convergence guarantee:			
• ϵ -first-order stationary point: $\ \nabla f(x)\ \leq \epsilon$.			
• (ϵ, δ) -second-order stationary point:			
$\ \nabla f(x)\ \le \epsilon \text{ and } \lambda_{\min}(\nabla^2 f(x)) \ge -\delta.$			
Note that $\nabla f(x) = 0$ and $\nabla^2 f(x) \succ 0 \Rightarrow x$ is a			
local minimum.			

ALGORITHM

Algorithm 1: Simple Stochastic Recursive Gradient Descent (SSRGD) 1 input: initial point x_0 , epoch length m, minibatch size b, step size η , perturbation radius r, threshold gradient g_{thres} , threshold function value f_{thres} , super epoch length t_{thres} . 2 $super_epoch \leftarrow 0$ 3 for s = 0, 1, 2, ... do if $super_epoch = 0$ and $\|\nabla f(x_{sm})\| \leq g_{thres}$ then $\widetilde{\boldsymbol{x}} \leftarrow x_{sm}, \ \boldsymbol{t_{init}} \leftarrow sm, \ super_epoch \leftarrow 1$ $x_{sm} \leftarrow \tilde{x} + \xi$, where ξ uniformly $\sim \mathbb{B}_0(r)$ // we use super epoch since we do not 6 want to add the perturbation too often near a saddle point $v_{sm} \leftarrow \nabla f(x_{sm})$ // compute full gradient every m steps for k = 1, 2, ..., m do $t \leftarrow sm + k$ 10 $x_t \leftarrow x_{t-1} - \eta v_{t-1}$ $v_t \leftarrow \frac{1}{b} \sum_{i \in I_b} \left(\nabla f_i(x_t) - \nabla f_i(\mathbf{x_{t-1}}) \right) + \mathbf{v_{t-1}} // I_b \text{ are i.i.d. samples with } |I_b| = b$ 11 if $super_epoch = 1$ and $(f(\tilde{x}) - f(x_t) \ge f_{thres} \text{ or } t - t_{init} \ge t_{thres})$ then 12 $super_epoch \leftarrow 0$ 13 $x_{(s+1)m} \leftarrow x_t$ 14

Parameters: $m = \sqrt{n}, \ b = \sqrt{n}, \ \eta = \widetilde{O}(\frac{1}{L}), \ r = \widetilde{O}(\min(\frac{\delta^3}{\rho^2 \epsilon}, \frac{\delta^{3/2}}{\rho\sqrt{L}}))$

PROOF OVERVIEW

• 1. Large gradients: $\|\nabla f(x)\|^2 > g_{\text{thres}} = \epsilon$ Key relation between $f(x_t)$ and $f(x_{t-1})$, where $x_t = x_{t-1} - x_{t-1}$ $f(x_t) \le f(x_{t-1}) - \frac{\eta}{2} \|\nabla f(x_{t-1})\|^2 - \left(\frac{1}{2n} - \frac{L}{2}\right)\|x_t$

Observ.: cancel the last two terms \Rightarrow get an ϵ -first-order stationary point ($\|\nabla f(x)\| \le \epsilon$) in $\frac{2(f(x_0) - f^*)}{n\epsilon^2}$ steps. \triangleright First consider the gradient estimator v_t in SVRG papers (convergence result $O(n^{2/3}/\epsilon^2)$): $v_t \leftarrow \frac{1}{b} \sum_{i \in I_b} \left(\nabla f_i(x_t) - \nabla f_i(\widetilde{x}) \right) + \nabla f(\widetilde{x})$ (reuse the fixed snapshot full gradient $\nabla f(\widetilde{x})$). **Bound the third term (variance):** $\mathbb{E}\left[\|\nabla f(x_{t-1}) - v_{t-1}\|^2\right] \leq \frac{L^2}{h} \mathbb{E}\left[\|x_{t-1} - \widetilde{x}\|^2\right].$ Connect with the second term by using Young's inequality: $-\|x_t - x_{t-1}\|^2 \leq \frac{1}{\alpha} \|x_{t-1} - \widetilde{x}\|^2 - \frac{1}{1+\alpha} \|x_t - \widetilde{x}\|^2$. **Sum up** (3) for each epoch *s* (*m* steps) to cancel the last two terms: $\mathbb{E}[f(x_{(s+1)m})] \leq \mathbb{E}[f(x_{sm})] - \frac{\eta}{2} \sum_{j=sm+1}^{sm+m} \mathbb{E}[\|\nabla f(x_{j-1})\|^2] \quad \text{(need } b \geq m^2 \text{ due to Young's inequality).}$ Thus the convergence result is $T(b + \frac{n}{m}) = \frac{1}{\epsilon^2}(b + \frac{n}{m}) = \frac{n^{2/3}}{\epsilon^2}$ by choosing $b = m^2 = n^{2/3}$ due to $b \ge m^2$. ▷ Now consider the recursive gradient estimator (originally introduced by [Nguyen et al. 2017]) in Algo 1: Only need to bound the third term: $\mathbb{E}[\|\nabla f(x_{t-1}) - v_{t-1}\|^2] \leq \frac{L^2}{b} \sum_{j=sm+1}^{t-1} \mathbb{E}[\|x_j - x_{j-1}\|^2].$

Already connect with the second term, and sum up (3) for each epoch to cancel the last two terms. Thus the convergence result is $T(b + \frac{n}{m}) = \frac{1}{\epsilon^2}(b + \frac{n}{m}) = \frac{n^{1/2}}{\epsilon^2}$ by choosing $b = m = n^{1/2}$.

• 2. Around saddle points: $\|\nabla f(\widetilde{x})\|^2 \leq \epsilon$ and $\lambda_{\min}(\nabla^2 f(\widetilde{x})) \leq -\delta$ i) Localization: $\forall t$, $\|x_t - x_0\| \leq \sqrt{t(f(x_0) - f(x_t))}$. If function value does not decrease so much, then all iteration points are not far from the start point. ii) Small stuck region in the random perturbation ball: $\exists t \leq t_{\text{thres}}, \|x_t - x_0\| \geq \Omega(\delta)$. After the

$$\left(\frac{v^2}{\overline{L}}\right)$$
, $g_{\text{thres}} = \epsilon$, $f_{\text{thres}} = \widetilde{O}\left(\frac{\delta^3}{\rho^2}\right)$, $t_{\text{thres}} = \widetilde{O}\left(\frac{1}{\eta\delta}\right)$

$$-\eta v_{t-1}$$
.

$$-x_{t-1}\|^2 + \frac{\eta}{2} \|\nabla f(x_{t-1}) - v_{t-1}\|^2.$$
(3)

perturbation $x_0 = \tilde{x} + \xi$, x_0 will escape this saddle point in a super epoch, i.e., within t_{thres} steps.