SSRGD: Simple Stochastic Recursive Gradient Descent
for Escaping Saddle Points

Zhize L1

King Abdullah University
of Science and Technology

Tsinghua University, and KAUST

PROBLEM

We consider two types of nonconvex problems.
1) The finite-sum problem:

min f(z) = = 3 fila),

Assumption 1 (Gradient Lipschitz)

|V fi(x1) = Vfi(x2)| < Lj|lz1 — 22|,
(1) Assumption 2 (Hessian Lipschitz)

IV? fi(z1) = V2 fi(xa)|| < pllzr — 22|,

Convergence guarantee:
o e-first-order stationary point: |V f(z)|| < e.
® (€,0)-second-order stationary point:

IV f(z)| <eand Auin (VA f(x)) > —6.

Note that Vf(x) = 0 and V2f(x) = 0= zisa
local minimum.
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where f(x) and all individual f;(z) are possibly
nonconvex.
2) The online (expectation) problem:

min f(z) := E¢vp|F(z, ()], (2)

where f(z) and F(x, () are possibly nonconvex.

CONVERGENCE RESULT

Table 1: Stochastic gradient complexity of optimization algorithms for nonconvex finite-sum problem (1)

Algorithm Stochastic gl:adient Convergence Negative-curva?ure
complexity guarantee search subroutine
GD [Nesterov, 2004] O(%) e-first-order No
SVRG [Reddi et al., 2016],
- * 2/3
[AI;?SEJFLi?itI_Efa;(S 1270]16]’ O(n A ‘”*E: ) e-first-order No
SVRG+ [Li and Li, 2018]
SNVRG [Zhou et al., 2018b];
. : 1/2
SpiderBoost [Wang et o, 2015] O+ %) cfirstorder No
SARAH [Pham et al., 2019]
SSRGD (this paper) O(n A ”:; - ) e-first-order No
PGD [Jinet al., 2017] h( =+ 1) (€, 0)-second-order No
: Agarwa? ;0;1.2,21:(;)&181;?82?:1/151?211., 2016] O(a5 + 55 ?ff: | E:fj ) | (€,d)-second-order Needed
Neon2+SVRG [Allen-Zhu and Li, 2018] 5(”: : <3 "‘}:fj ) (€, 0)-second-order Needed
Stabilized SVRG [Ge et al., 2019] O("f + 2 + ) (€, §)-second-order No
SNVRG " +Neon2 [Zhou et al., 2018a] 5(”; : 33 T;;:fj ) (€, 0)-second-order Needed
SPIDER-SFO* (+Neon2) [Fang et al., 2018] | O(™4 + ™5 + - + L) | (e, 6)-second-order Needed
SSRGD (this paper) 5(”; - ”; - 3 (€, 0)-second-order No

e We improve the result of Stabilized SVRG [Ge et al., 2019] to almost optimal, i.e., from n?/3/e? to n'/2 /¢
since [Fang et al., 2018] gave a lower bound Q(n'/?/e2?) for finding even just an e-first-order stationary
point. Also, our SSRGD is better than SPIDER-SFO™ if § is very small (e.g., § < 1/4/n).

e Note that the other two n'/? algorithms (SNVRG* and SPIDER-SFO™) need the negative curvature search
subroutine (e.g., Neon/Neon2) for escaping the saddle points while our SSRGD only needs to add random
perturbations.

e Besides, we also prove the convergence results for nonconvex online (expectation) problem (2).
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1 input: initial point x(, epoch length m, minibatch size b, step size n, perturbation radius 7,
threshold gradient ginyres, threshold function value fin,es, super epoch length ¢y yes.
2 super_epoch < 0

3 fors=0,1,2,...do

4 if super_epoch = 0 and |V f(Zsm )| < gihres then

T < Tgm, Linit < sm, super_epoch < 1

Tsm < © + &, where £ uniformly ~ Bq(r) // we use super epoch since we do not
want to add the perturbation too often near a saddle point

Algorithm 1: Simple Stochastic Recursive Gradient Descent (SSRGD)

S
6

7 Vem < V f(xsm) /I compute full gradient every m steps
8 fork=1.2,...,mdo

9 t < sm+k

10 Tt < X1 — NVt

11 v <= 5 e (Vilae) = Vifi(e, 1)) +viy /I areiid. samples with [I;| = b
12 it SUPET—epOCh = 1 and (f(ZE) o f(mt) > fthres or t — tinit = tthres) then

13 L super_epoch < 0

14 L(s4+1)m — Tt

~ ~

- - - - s e ==
Parameters: m = \/ﬁ, b= \/ﬁ, N = O(%), T = O(mln(p(sze, \/f))' Jthres — €, fthres — 0(2_2)/ tthres = O(%)

PROOF OVERVIEW

e 1. Large gradients: ||V f(x)||? > Gthres = €
Key relation between f(z;) and f(x;—1), where x; = x4_1 — Nvs_1.

1 L
fla) < fl) = IV @) = (5 = 5)llee=2eall® + SIVF @) = vl )
Observ.: cancel the last two terms =- get an e-first-order stationary point (||V f(z)| <€) in 2/ (f?OE)Q_f ) steps.
> First consider the gradient estimator v; in SVRG papers (convergence result O(n?/? /€2)):
U 4= D e I (Vfi(xy) = Vfi(Z)) + Vf(Z) (reuse the fixed snapshot full gradient V f(Z)).
Bound the third term (variance): E |||V f(zi—1) — vi—1]|?| < LTQ Cl||lei—1 — 7]?].
Connect with the second term by using Young's inequality: — ||z, —z;—1(|* < 2 |lz—1—Z[]* — 55 |z — 7|

Sum up (3) for each epoch s (m steps) to cancel the last two terms:
8[f (s 1ym)] < E[f (@am)] — 3 3257001 BIIVF (2-0) ]

1=sm-+1
Thus the convergence resultis T(b+ 2) = 5(b+ 2) = ”;/ " by choosing b = m? = n2?/3 due to b > m?.
> Now consider the recursive gradient estimator (originally introduced by [Nguyen et al. 2017]) in Algo 1:
Only need to bound the third term: E ||V f(z:—1) — v:_1]|?| < LTQ Z?;ﬁmﬂ B[l — x-1])%]-
Already connect with the second term, and sum up (3) for each epoch to cancel the last two terms.

Thus the convergence resultis T(b+ 2) = 5 (b+ &) = ”612/2 1/2,

e 2. Around saddle points: |V f(2)||? < e and Apuin (V2 f(2)) < —6

i) Localization: Vi, ||zy — xol| < /t(f(xo) — f(x:)). If function value does not decrease so much,
then all iteration points are not far from the start point.

ii) Small stuck region in the random perturbation ball: 3t < tihyes, ||T: — To|| = (). After the
perturbation g = x + &, z¢ will escape this saddle point in a super epoch, i.e., within ¢i},,e5 Steps.

(need b > m?* due to Young’s inequality).

by choosing b = m =n




