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PROBLEM
We consider two types of nonconvex problems.
1) The finite-sum problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where f(x) and all individual fi(x) are possibly
nonconvex.
2) The online (expectation) problem:

min
x∈Rd

f(x) := Eζ∼D[F (x, ζ)], (2)

where f(x) and F (x, ζ) are possibly nonconvex.

DEFINITION
Assumption 1 (Gradient Lipschitz)

‖∇fi(x1)−∇fi(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2.
Assumption 2 (Hessian Lipschitz)

‖∇2fi(x1)−∇2fi(x2)‖ ≤ ρ‖x1 − x2‖, ∀x1, x2.
Convergence guarantee:
• ε-first-order stationary point: ‖∇f(x)‖ ≤ ε.
• (ε, δ)-second-order stationary point:
‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −δ.
Note that ∇f(x) = 0 and ∇2f(x) � 0 ⇒ x is a
local minimum.

CONVERGENCE RESULT

•We improve the result of Stabilized SVRG [Ge et al., 2019] to almost optimal, i.e., from n2/3/ε2 to n1/2/ε2

since [Fang et al., 2018] gave a lower bound Ω(n1/2/ε2) for finding even just an ε-first-order stationary
point. Also, our SSRGD is better than SPIDER-SFO+ if δ is very small (e.g., δ ≤ 1/

√
n).

•Note that the other two n1/2 algorithms (SNVRG+ and SPIDER-SFO+) need the negative curvature search
subroutine (e.g., Neon/Neon2) for escaping the saddle points while our SSRGD only needs to add random
perturbations.
• Besides, we also prove the convergence results for nonconvex online (expectation) problem (2).

ALGORITHM

Parameters: m =
√
n, b =

√
n, η = Õ( 1

L ), r = Õ
(

min( δ
3

ρ2ε ,
δ3/2

ρ
√
L

)
)
, gthres = ε, fthres = Õ( δ

3

ρ2 ), tthres = Õ( 1
ηδ )

PROOF OVERVIEW

• 1. Large gradients: ‖∇f(x)‖2 > gthres = ε
Key relation between f(xt) and f(xt−1), where xt = xt−1 − ηvt−1.

f(xt) ≤ f(xt−1)− η

2
‖∇f(xt−1)‖2 −

( 1

2η
− L

2

)
‖xt − xt−1‖2 +

η

2
‖∇f(xt−1)− vt−1‖2. (3)

Observ.: cancel the last two terms ⇒ get an ε-first-order stationary point (‖∇f(x)‖ ≤ ε) in 2(f(x0)−f∗)
ηε2 steps.

B First consider the gradient estimator vt in SVRG papers (convergence result O(n2/3/ε2)):
vt ← 1

b

∑
i∈Ib

(
∇fi(xt)−∇fi(x̃)

)
+∇f(x̃) (reuse the fixed snapshot full gradient∇f(x̃)).

Bound the third term (variance): E
[
‖∇f(xt−1)− vt−1‖2

]
≤ L2

b E[‖xt−1 − x̃‖2].
Connect with the second term by using Young’s inequality: −‖xt−xt−1‖2 ≤ 1

α‖xt−1−x̃‖
2− 1

1+α‖xt−x̃‖
2.

Sum up (3) for each epoch s (m steps) to cancel the last two terms:
E[f(x(s+1)m)] ≤ E[f(xsm)]− η

2

∑sm+m
j=sm+1 E[‖∇f(xj−1)‖2] (need b ≥ m2 due to Young’s inequality).

Thus the convergence result is T (b+ n
m ) = 1

ε2 (b+ n
m ) = n2/3

ε2 by choosing b = m2 = n2/3 due to b ≥ m2.
B Now consider the recursive gradient estimator (originally introduced by [Nguyen et al. 2017]) in Algo 1:

Only need to bound the third term: E
[
‖∇f(xt−1)− vt−1‖2

]
≤ L2

b

∑t−1
j=sm+1 E[‖xj − xj−1‖2].

Already connect with the second term, and sum up (3) for each epoch to cancel the last two terms.
Thus the convergence result is T (b+ n

m ) = 1
ε2 (b+ n

m ) = n1/2

ε2 by choosing b = m = n1/2.

• 2. Around saddle points: ‖∇f(x̃)‖2 ≤ ε and λmin(∇2f(x̃)) ≤ −δ
i) Localization: ∀t, ‖xt − x0‖ ≤

√
t(f(x0)− f(xt)). If function value does not decrease so much,

then all iteration points are not far from the start point.
ii) Small stuck region in the random perturbation ball: ∃t ≤ tthres, ‖xt − x0‖ ≥ Ω(δ). After the

perturbation x0 = x̃+ ξ, x0 will escape this saddle point in a super epoch, i.e., within tthres steps.
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